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Some Typical Biostatistical Examples Using R in Epidemiologic Investigations, in Public Health, and in Preventive Medicine Practices

Introduction

____________________________

Since 1995, when Ross Ihaka and Robert Gentleman of New Zealand released the source code for R, much work has been done by a host of biostatistical workers and others to make this open-source software accessible to epidemiologic investigators in the practice of public health and preventive medicine. It is fitting that this book closes with a brief review of the currently available R software pertinent to these important fields of research. In particular, applications in the following areas will be reviewed:
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Environmental epidemiology
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Applied statistical genetics
 SHAPE  \* MERGEFORMAT 



Modeling using spline analysis
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Missing data analysis

 SHAPE  \* MERGEFORMAT 



Bioconductor case studies
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Biomolecular reaction and transport
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Adventist Health Studies, and
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R programming and biostatistical software development

Each of these topics deserves a substantial treatise on its own merit. An introductory approach will be undertaken to allow the readers to further pursue their interests in these important topics.

Biostatistical Challenges and Resolutions

____________________________

A number of contemporary epidemiologic investigations are reviewed in this section, highlighting the wide interest in applications using the R environment in biostatistics.

Biostatistical Modeling in Environmental Epidemiology

Environmental epidemiology[1] encompasses the study of external factors that affect the incidence, prevalence, and geographic range of health conditions. These factors may be naturally occurring or may be introduced into environments where people live, and work; the discovery of the environmental exposures that mitigate against or contribute to diseases, injuries, developmental conditions, disabilities, and deaths; and the identification of public health and concomitant actions to prepare for, avoid, and effectively manage the risks associated with harmful exposures. Environmental exposures are involuntary and thus generally exclude occupational exposures and voluntary exposures such as active smoking, medications, and diet. These exposures can be broadly categorized into those that are proximate (e.g., directly leading to a health condition), including chemicals, physical agents, and microbiological pathogens, and those that are more distal, such as social conditions, climate change, and other broad-scale environmental changes:
Proximate exposures occur through air, food, water, and dermal contact. Distal exposures cause adverse health conditions directly by altering proximate exposures, and indirectly through changes in ecosystems and other support systems for human health.

Environmental epidemiology seeks to:
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Understand case subjects most vulnerable and sensitive to an exposure

 SHAPE  \* MERGEFORMAT 



Evaluate mechanisms of action of environmental exposures

 SHAPE  \* MERGEFORMAT 



Identify public health and health care policies and measures to manage risks
 SHAPE  \* MERGEFORMAT 



Evaluate the effectiveness, costs, and benefits of these policies and measures and provide accountability of policies and actions

Environmental epidemiology research can inform risk assessments, development of standards and other risk management activities, and estimates of the co-benefits and co-harms of policies designed to reduce global environment change, including  policies implemented in other sectors (e.g., food, water, air, and lifestyle) that can affect human health.

The work of environmental epidemiology is focused on several aspects including:
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Vulnerability: The summation of all risk and protective factors that ultimately determine whether an individual or subpopulation experiences adverse health outcomes when an exposure to an environmental agent occurs.

 SHAPE  \* MERGEFORMAT 



Sensitivity: The responsiveness of individuals or subpopulations increased responsiveness, primarily for biological reasons, to that exposure. Biological sensitivity may be related to developmental stage, pre-existing medical conditions, acquired factors, and genetic factors.
 SHAPE  \* MERGEFORMAT 



Socioeconomic factors: The critical roles in affecting the vulnerability and sensitivity to environmentally mediated factors by increasing the likelihood of exposure to harmful agents, interacting with biological factors that mediate risk, and leading to differences in the ability to prepare for or cope with exposures or early phases of illness. Populations living in certain regions may be at increased risk because of the physical location and environmental characteristics of the region.

A number of published information sources are available, including:

The International Society for Environmental Epidemiology

International Epidemiological Association

Journal of Exposure Science and Environmental Epidemiology

Epidemiology Journal

Environmental Health Perspectives (news and peer-reviewed research journal published by the National Institute of Environmental Health Sciences)

Biostatistics of Environmental Epidemiology

In the research of the biostatistics of environmental epidemiology, focus has been directed toward the estimation of health risks associated with the exposure to  specific environmental agents. These efforts have resulted in the development of  specific biostatistical methods and software, as summarized by Peng and Dominici,[2] which included a number of statistical issues in estimating the health effects of spatial–temporal environmental exposure, data analysis and biostatistical models, and risks pooling across locations, as well as the quantifying of spatial heterogeneity. A typical research study will be examined, it is known as the National Morbidity, Mortality, and Air Pollution Study (NMMAPS)

The NMMAPS was a U.S. national investigation of air pollution and health, originally covering 90 major cities for the years 1987–1994, recording data on mortality, hospitalizations, and various ambient air pollution concentrations. That database has been updated to include mortality and air pollution information for 108 major U.S. cities for the years 1987–2000. Detailed information may be downloaded from the Internet-based Health and Air Pollution Surveillance System (iHAPSS) website at http://www.ihapss.jhsph.edu/.

The NMMAPS database recorded daily measurements on:
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Particulate pollutant matter (both PM10 and PM2.5), where
PM10 (or PM-10) is a measure of particles, in μg/m3, in the atmosphere, with a diameter equal to or less than a nominal 10 μm.
PM2.5 (or PM-2.5) is a similar measure of smaller particles in the air, with a diameter ≤2.5 μm.
In the database, the pollutant for each city had been pre-processed to provide an averaging methodology to account for the many collection bins over certain time intervals. Adjusting for the mean values and the variations over time and many collection stations, to construct a PM10 series, one may add the “trimmed mean” values to the “mean trend” values, that is,
PM10 = PM10 trimmed-mean + PM10 mean-trend
or,
pm10 = pm10tmean + pm10mtrend
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Ozone (O3)
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Sulfur dioxide (SO2)
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Nitrogen dioxide (NO2)
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Carbon monoxide (CO)

The air pollution data were supplied by the Air Quality System of the U.S. Environmental Protection Agency (EPA). Daily mortality data were collected using death certificate data from the National Center for Health Statistics (NCHS). Sources of particulate matter can be manmade or natural. Air pollution and water pollution can take the form of solid particulate matter.[2]
The NMMAPSlite Package
This package provides the data for 108 U.S. cities, in terms of three databases:
outcome
Daily time series of mortality for various causes, and is divided into three age categories:
under65, 65to74, and 75up
exposure
Pollution and meteorological data frames
Meta
Pertaining to all the sites in the database

Illustration of a Report on Environmental Air Pollution in Hong Kong

Hong Kong (HK) is a Special Administrative Region (SAR) of the Peoples’ Republic of China. The following is a typical regular report on the air quality of a suburb of HK issued on July 16, 2012.
Hong Kong Air Quality Readings
Below are the latest pollution readings from all of the Hong Kong Government’s official air quality monitoring stations. While there are 14 general ambient monitoring stations, only 3 of those 14 locations take roadside measurements—Central, Causeway Bay, and Mong Kok.
The official alert service shows measurements of nitrogen dioxide (NO2), particulate matter (PM), ozone, and sulfur dioxide (SO2) for all the locations. Comparing actual, present levels of NO2, PM, ozone, and SO2 to two standards:
1.
The Government’s air pollution index (API) readings

2.
The air quality guidelines (AQGs) of the WHO

The ratio shows how far the WHO AQGs are being exceeded by current air pollution levels. Even though the Government’s API is woefully out of date (not having been revised since 1987) and does not protect public health sufficiently by any consideration, one may use the API level of 100 as a critical threshold above which to justify the issuance of the warning, “Avoid roadside situations.” Since the Air Quality Objectives, on which the API is based, are presently undergoing revision, we have chosen to take a conservative, uncontroversial approach—generous to the Government—and issue warnings in line. However, keeping in mind that Hong Kong’s Air Quality Objectives recommended maximum guidelines for seven pollutants, pollutant levels two to four times greater than those recommended under the WHO AQGs are permitted.

Assessment of current pollutant levels against the WHO AQGs is provided and because these guidelines are considered by public health experts to be the best standards for adequate protection of public health. Readers interested in learning more about the AQGs can download the original WHO document from http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf. It provides a comprehensive explanation of the AQGs.

It is crucial to note that, although pollutant levels are considered unsafe under the WHO AQGs, they may not result in an API reading in excess of 100. Again, we issue an avoidance warning ONLY when the Government API exceeds 100. However, this does not mean that it is healthy to be at the roadside when the API is under 100. Rather, one can only safely conclude that it is very unhealthy to go out when the API exceeds 100 and we have issued a warning. When the API is below 100 but pollution exceeds the WHO AQGs, you must make a judgment call for yourself about the advisability of venturing outside in a highly trafficked area.
	In the District of Kwai Chung, a suburb of HK:

	API alerts so far this year: 1 out of 197 days.

	
	Current (A)
	WHO AQG (B)
	Ratio (A/B)

	Particulate matter (PM10)
	30
	50
	0.6

	Nitrogen dioxide (NO2)
	68
	200
	0.34

	Ozone (O3)
	3.1
	100
	0.03

	Sulfur dioxide
	43.2
	20
	2.16

	Fine particulate matter (PM2.5)
	17.6
	25
	0.7

	API: 35
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The following worked examples will show biostatistical approaches in environmental epidemiology, with particular reference to correlations between mortality rates and exposure factors such as levels of temperature and air pollution in terms of spatial and temporal pollutant concentrations. The approach follows that of Peng and Dominici.[2]

Solution: Consider the NMMAPS database -
> require("NMMAPSlite") # Accessing the database
Loading required package: NMMAPSlite

Loading required package: stashR

Loading required package: filehash

filehash: Simple key-value database (2.2-1 2012-03-12)

A Set of Tools for Administering SHared Repositories (0.3-5 2012-03-21)

NMMAPS Data Lite (0.3-2 2010-02-15)

Initialize database using 'initDB'
> initDB("NMMAPS") # Initializing the database
> library(NMMAPSlite) # Bringing up the stored information
> ls("package:NMMAPSlite") # Inspecting the contents of NMMAPS

[1] "getMetaData"   "initDB"   "listCities"   "readCity"
> cities <- listCities() # Assessing the contents by cities
> head(cities, 80) # Viewing the first 80 cities, including LAX and NYC
> # Note: “la” = LAX = Los Angeles, California
> #         “ny” = NYC= New York City, New York
[1]
"akr"
"albu"
"anch"
"arlv"
"atla"
"aust"
"bake"
"balt"
"batr"
"bidd"

[11]
"birm"
"bost"
"buff"
"cayc"
"cdrp"
"char"
"chic"
"cinc"
"clev"
"clmg"

…………………………………………………………………………………………………………
[41]
"jcks"
"jckv"
"jers"
"john"
"kan"
"kans"
"king"
"knox"
"la"
"lafy"

…………………………………………………………………………………………………………
[71]
"ny"
"oakl"
"okla"
"olym"
"oma"
"orla"
"phil"
"phoe"
"pitt"
"port"
> LosAngeles <- readCity("la", asDataFrame = FALSE)
> with(LosAngeles$exposure, summary(pm10tmean))

Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
NA's
-44.000

-11.860
-1.517
-0.067
9.457
88.290
4120.000
> with(LosAngeles$exposure, summary(pm10tmean +
+ pm10mtrend))

Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
NA's
-4.161

28.950
39.040
41.540
51.180
129.900
4120.000
> with(LosAngeles$exposure, {plot(date, pm10tmean +
+ pm10trend, ylab = expression(PM[10]), cex = 0.6)})
> # Outputting: Figure 1.
[image: image24.jpg]2000

1995

1990




Figure 1 Recorded concentration of particulate matter PM10 in the atmosphere for Los Angeles over 14 years: 1987–2000.
> LosAngeles <- readCity("la", asDataFrame = FALSE)

> with(LosAngeles$exposure, summary(pm10tmean))

Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
NA's
-44.000
-11.860
-1.517
-0.067
9.457
88.290
4120.000
> with(LosAngeles$exposure, summary(pm10tmean +
+                                                                  pm10mtrend))

Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
NA's
-4.161

28.950
39.040
41.540
51.180
129.900
4120.000
> # A natural spline smoother function, from the package splines, is needed.
> require(splines) # Accessing the package splines

Loading required package: splines

> library(splines) # Bringing up the contents of the package splines

> ls("package:splines") # Looking for the smoother spline function ns()
[1]
"as.polySpline"
"asVector"
"backSpline"
"bs"
[5]
"interpSpline"
"ns"
"periodicSpline"
"polySpline"
[9]
"spline.des"
"splineDesign"
"splineKnots"
"splineOrder"
[13] "xyVector"
> # A generalized linear model function, from the package glm2, is needed.

> require(glm2) # Assessing the package glm2 for the function glm2()

Loading required package: glm2

> # Loading the package glm2 which contains the improved
> # Generalized Linear Function glm2()

> library(glm2) # Bringing up the contents of the package glm2
> ls("package:glm2") # Listing the contents of the package glm2

[1] "glm.fit2" "glm2" # Indicating that the function glm2() is available.
> pm10 <- with(LosAngeles$exposure, pm10tmean +
+                                                                 pm10mtrend)

> x <- LosAngeles$exposure[, "date"]

> fit <- glm2(pm10 ~ x) # Fitting the Generalized Linear Model
> summary(fit) # Checking the model
Call:

glm2(formula = pm10 ~ x)

Deviance Residuals:

Min
1Q
Median
3Q
Max
-40.807
-11.570
-1.534
10.122
90.694
Coefficients:

Estimate
Std. Error
t value
Pr(>|t|)
(Intercept)
70.6818922
3.5046583
20.168
<2e-16***

x
-0.0033328
0.0003953
-8.431
<2e-16***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 333.5871)

Null deviance:
354629
on
993
degrees of freedom

Residual deviance:
330918
on
992
degrees of freedom
(4120 observations deleted due to missingness)

AIC: 8599.9

Number of Fisher Scoring iterations: 2

> # Preparing data for 6 years (1995 through 2000) for analysis:

> subdata <- subset(LosAngeles$exposure, date >=
+                                  as.Date("1995-01-01"))

> subdata <- transform(subdata, pm10 = pm10tmean +
+                                                        pm10trend)

> n <- 6 # Duration of the data frame: n = 6 years
> # Assuming the spline smoother function uses 2 degrees of freedom (df) per year of data for capturing
> # the seasonality: df = 2n
> fit <- glm2(pm10 ~ ns(date, df=2*n), data = subdata)

> x <- seq(as.Date("1995-01-01"), as.Date("2000-12-31"),
+                "week")

> par(mar=c(2,4,2,2), mfrow=c(2,1))

> with(subdata, {

+                            plot(date, pm10, ylab=expression(PM[10]),

+                                     main = "Los Angeles", cex=0.8)

+          lines(x, col="red", predict(fit, data.frame(date=x)))})

> # Outputting: Figure 2 (Top Graph)

>
> NewYorkCity <- readCity("ny", asDataFrame=FALSE)

> subdata <- subset(NewYorkCity$exposure, date >=
+                                  as.Date("1995-01-01"))

> subdata <- transform(subdata,
+                                      pm10=pm10tmean+pm10mtrend)

> n <- 6 # Duration of the data frame: n = 6 years
> # Assuming the spline smoother function uses 2 degrees of freedom (df) per year of 
> # data for capturing the seasonality: df = 2n
> fit <- glm2(pm10 ~ ns(date,df=2*n),data=subdata)

> x <- seq(as.Date("1995-01-01"), as.Date("2000-12-31"),
+                               "week")

> with(subdata, {plot(date, pm10, ylab=expression(PM[10]),

+ main = "New York City", cex=0.8)

+ lines(x, col="red", predict(fit, data.frame(date=x)))})

> # Outputting: Figure 2 (Bottom Graph).
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Figure 2 Temporal PM10 data for Los Angeles (west coast of the United States) and for New York City (east coast of the United States), 1995–2000: modeling with a natural spline with two degrees of freedom per year.
Remarks:

Figure 2 seems to indicate that

(1)
There is a periodical variation pattern in the PM10 data in both graphs.

(2)
In the pattern for NYC, the PM10 data show a regular pattern—with a summer increase in PM10 levels and a winter decrease—throughout the 6-year span.

(3)
In the pattern for LAX, the PM10 data do not seem to show such a regular pattern. Over the 6-year span, there appears to be three cycles: the first two extend over 1.5 years each and the third extends over 2.5 years. Perhaps such patterns reflect the west coast desert climate of LAX.
(4)
It may be instructive to reflect on these patterns when one examines the periodicity of the data of other pollutant, such as the O3, SO2, NO2, and CO, as well as the mortality and morbidity data.
(5)
One may also question the assumption that the spline smoother function ns() using two degrees of freedom (df) per year of data to capture the seasonality. Recomputation is undertaken with the assumption of 4 df per year (say, one for each of the four seasons in a “normal” year). The results, shown in Figure 3, seem to indicate that the modeled PM10 patterns are practically identical for both cases/cities. Perhaps, the assumption of 4 df per year has overcompensated any true periodicity in the data.
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Figure 3 Temporal PM10 data for Los Angeles (west coast of the United States) and for New York City (east coast of the United States), 1995-2000: modeling with a natural spline with four degrees of freedom per year.
Next, the temporal patterns of some typical air pollutants will be examined: first the ozone concentration O3, then the sulfur dioxide concentration SO2. Then these patterns will be compared with the temporal mortality outcomes recorded over the same time frame, to check for meaningful correlations.


Solution: In the database, the pollutant O3 was measured in parts per billion (ppb) on an hourly basis. The variable o3tmean is a daily time series of the trimmed mean of the detrended 24-hour average of ozone concentration, and the trend for this parameter is stored in the variable o3mtrend.
Continuing with the computations in Example 1, the following R code segments may be used to undertake the analysis:

>
> par(mfrow=c(2,1), mar=c(3,4,2,2))

> with(LosAngeles$exposure, plot(date, o3tmean+o3mtrend,
+ main="Los Angeles", ylab=expression(O[3]*"(ppb)"), pch="."))

> # Outputting: Figure 4 (Top Graph).
> with(NewYorkCity$exposure, plot(date, o3tmean+o3mtrend,
+ main="New York City",ylab=expression(O[3]*"(ppb)"),pch="."))

> # Outputting: Figure 4 (Bottom Graph).
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Figure 4 Temporal O3 data for Los Angeles (west coast of the United States) and for New York City (east coast of the United States), 1995–2000.
Remarks:

Figure 4 seems to indicate that

(1)
There is a strongly seasonal pattern in the O3 data in both cities.

(2)
Both patterns showed a winter trough and a summer peak.

(3)
On average, it appears that the O3 peaks for LAX are about 50% higher than the corresponding peaks for NYC. Perhaps, this reflects the well-known understanding that the LAX basin is a high smog area, with the smog being “trapped” between the high Sierra Nevada mountains to the north and the cool Pacific Ocean to the south.
In an environment of high levels of smog, it would appear that significant correlations may exist between high smog level and mortality and morbidity, not the least of which is the likely relationship between a high smog environment and cardiopulmonary syndrome diseases and concomitant deaths, particularly among the elderly population.

(4)
It may therefore be instructive to compare the pollution levels of O3, as well as SO2 with the available mortality data, over the same time frame. This will be examined in the next two worked examples.

Solution: Using the Reproducibility Package of Peng and Dominici[2] that can be downloaded from: http://penguin.biostat.jhsph.edu/
The relevant R code segments for this computation are documented in the cacher:

2a04/c4d5523816f531f98b141c0eb17c6273f308/

that is, the R codes from the following source are relevant:

http://penguin.biostat.jhsph.edu/cpkg/2a04/c4d5523816f531f98b141c0eb17c6273f308/src/data.R
> # setting up a graph for comparative plots:
> par(mfrow=c(2,1), mar=c(3,4,2,2))

> # Assessing and plotting the O3 datasets:
> with(LosAngeles$exposure, plot(date, o3tmean+o3mtrend,
+ main="Los Angeles", ylab=expression(O[3]*"(ppb)"), pch="."))

> # Outputting: Figure 5 (Top Graph).
> # Assessing and plotting the Mortality count datasets:
> data <- readCity("la", asDataFrame = FALSE)

> outcome <- data$outcome
> data.split <- split(outcome, outcome$agecat)

> with(data.split[[3]], plot(date, death, main = "Over 75",
+                                            ylab = "Mortality count", pch = "."))

> # Outputting: Figure 5 (Bottom Graph).
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Figure 5 Comparing temporal O3 data and Mortality count data for Los Angeles (west coast of the United States) for 6 years: 1995–2000.
Remarks:

Figure 5 seems to indicate that

(1)
There is a strong correlation between the seasonal patterns in the O3 temporal data and the mortality count data for the elderly population (>75 years of age) in LAX.

(2)
Both patterns showed a recurrent winter trough and a summer peak.

(3)
Both patterns exhibited parallel annual cycles.

(4)
It would be interesting to see if this pattern also occurs for another common air pollutant, sulfur dioxide, which will be shown in the next worked example.


Solution: Repeating the computation, this time for SO2 –

> # setting up a graph for comparative plots:
> par(mfrow=c(2,1), mar=c(3,4,2,2))

> # Assessing and plotting the SO2 datasets:
> with(LosAngeles$exposure, plot(date, so2tmean+so2mtrend,

+ main="Los Angeles",ylab=expression(SO[2]*"(ppb)"), pch="."))

> data <- readCity("la", asDataFrame = FALSE)

> # Outputting: Figure 6 (Top Graph).
> data.split <- split(outcome, outcome$agecat)

> with(data.split[[3]], plot(date, death, main = "Over 75",

+ ylab = "Mortality count", pch = "."))

> # Outputting: Figure 6 (Bottom Graph).
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Figure 6 Comparing temporal SO2 data and mortality count data for Los Angeles (west coast of the United States) for 6 Years: 1995–2000.
Remarks:
Figure 6 seems to indicate that
(1)
Again, there is a strong correlation between the seasonal patterns in the SO2 temporal data and the mortality count data for the elderly population (>75 years of age) in LAX.
(2)
Both patterns showed a recurrent winter trough and a summer peak.

(3
 Both patterns exhibited parallel annual cycles.

(4)
It may be expected that this pattern also occurs for other common air pollutants.
A Report on Air Pollution and Environmental Epidemiology[3]
In January 1985 a smog period occurred for 5 days in parts of West Germany, including the Rhur District. The recorded health data included: mortality (24,000 deaths), morbidity in hospitals (13,000 hospital admissions, 5,400 outpatients, 1,500 ambulance transports), and consultations in physicians’ offices (1,250,000 contacts). The incidents were studied for a 6-week period including the smog episode and a time interval before and thereafter. The study region was the State of North Rhine-Westfalia (population: 16 million), but the analysis was restricted to the comparison of the polluted area and a control area (population: 6 million each). During the smog period, mortality and morbidity in hospitals increased in the polluted area, but there was no substantial increase in the control area. The increases were for:

 SHAPE  \* MERGEFORMAT 



The total number of deaths 8% vs. 2% (polluted area vs. control area)
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Hospital admissions 15% vs. 3%
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Outpatients 12% vs. 5%
The effects were more pronounced for cardiovascular diseases than for respiratory diseases. Regression analysis shows:
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a moderate influence of temperature, but
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a strong influence of ambient air pollution. The maxima of the ambient concentrations are more important on the same day, whereas the influence of the daily averages is more pronounced after a delay of 2 days.

The results are discussed considering other possible confounders such as indoor pollution and psychogenic influences of the alarm situation. In summary, the study suggests moderate health effects owing to increased air pollution during the smog episode.
Genetic and Molecular Epidemiology: Applied Statistical Modeling and Analysis in Genetics
Applied statistical genetics, using modeling and analysis, attempts to identify the genetic determinants of complex human traits by using next-generation association studies to detect new disease loci.[4,5] The main goal of the research is to elucidate the etiopathological cause (i.e., the cause of an abnormal state) of complex human disease. Large-scale studies are undertaken to investigate the genetic architecture of complex traits, with a primary focus on cardiometabolic and musculoskeletal phenotypes. The work addresses statistical genetics challenges by designing, evaluating, and proposing analytical strategies. Advances in high-throughput genotyping and sequencing, together with the availability of large sample sets and a better understanding of human genome sequence variation, have made next-generation genetic studies feasible. In the area of complex trait association studies, technology is rapidly outstripping the available capacity to analyze and interpret the results obtained. A typical example of this research is the investigation of next-generation association studies for complex phenotypes, such as type 2 diabetes, obesity, and related metabolic traits and develops appropriate robust methodologies to analyze and interpret the data where necessary.
A basic aim is:
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To document genetic variation, to identify variation that influences human health, and to study the biological impact of this variation, thus translating the potential of genomic sequence data into practical applications that deliver medical benefits to patients.
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To identify complex disease loci by carrying out well-powered association studies and develop, extend, and make publicly available analytical tools to achieve this goal.

The subject “molecular epidemiology” was introduced in 1973 by Kilbourne,[6] and popularized in 1993 by Schulte and Perera,[7] focusing on the impact of results in molecular studies that provide the path to identify the biomarker as a critical link to the basic mechanisms of diseases in populations, with particular interest to those engaged in cancer research and other infectious diseases in population medicine.
Genetic epidemiology may be considered as the underpinning driving force in this area of study and research. It is recognized that a critical path may be:

Genetic Epidemiology ( Molecular Epidemiology ( Population Medicine
From a biostatistical viewpoint, one may begin by considering the following R package in applied statistical analysis in genetics:

The CRAN Genetic Analysis Package gap
Currently (Version 1.1-6) dated March 15, 2012, and submitted by J. H. Zhao, this package is designed as an integrated R-based package for analysis in statistical genetics for both population and family data. It contains functions for sample size calculations of both population-based and family-based designs, probability of familial disease aggregation, kinship calculation, biostatistics in linkage analysis, and association analysis involving one or more genetic markers including haplotype analysis with or without environmental covariates. This package contains over 100 documented topics. A typical package is illustrated in the next worked example:


This function creates a regional association plot for a particular locus based on the  information about recombination rates, linkage disequilibria between the single nucleotide polymorphism (SNP—pronounced snip—which is a DNA sequence variation occurring when a single nucleotide [A, T, C, or G] in the genome differs between members of a biological species or paired chromosomes in an individual of interest and neighboring ones), and single-point association tests (p-values). The best p-value is not necessarily within locus in the original design. The usage formula for this function is:

asplot(locus, map, genes, flanking=1e3, best.pval=NULL,
             sf=c(4,4), logpmax=10, pch=21)

where the arguments are:

locus
Data frame with columns containing association results:
c("CHR", "POS", "NAME", "PVAL", "RSQR")
map
Genetic map: c("POS","THETA","DIST")
genes
Gene annotation with columns:
c("START", "STOP", "STRAND", "GENE")

flanking
Flanking length

best.pval
Best p-value for the locus of interest

sf
Scale factors for p-values and recombination rates, smaller values are necessary for gene dense regions

logpmax
Maximum value for –log10(p)

pch
Plotting character for the SNPs to be highlighted (e.g., 21 and 23 refer to circle and diamond)
The following R code-segments will run the program for this example:

> install.packages("gap")

> require(gap)

Loading required package: gap

[1] "R/gap is loaded"

> library(gap)

> ls("package:gap")

[1]
"a2g"
"ab"
"aldh2"
[4]
"allele.recode"
"apoeapoc"
"asplot"
[7]
"b2r"
"BFDP"
"bt"
………………………………………………………………
[112]
"whscore"
"x2"
"z"
>

> asplot(CDKNlocus, CDKNmap, CDKNgenes

- CDKN2A
- CDKN2B
> title("CDKN2A/CDKN2B Region") # Outputting: Figure 7.
The study and data on 225 SNPs across multiple genes:
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Figure 7 Plotting the region of gene locus of CDKN2A/CDKN2B with the function asplot() from the CRAN package gap.
> asplot(CDKNlocus, CDKNmap, CDKNgenes, best.pval=5.4e-8,
+ sf=c(3,6)) # Outputting: Figure 8.
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Figure 8 Plotting the region of gene association of CDKN with the function asplot() from the CRAN package gap.
Computational Applied Genetic Epidemiology (CAGE)[5]
A convenient introduction to CAGE is to be familiar with publicly available databases in the area of genetics and genetic epidemiology. For example:
1.
The Human Genome Diversity Project (HGDP)

HGDP began in 1991 with the objective of documenting and characterizing the genetic variation in humans worldwide. Genetic and demographic data are recorded on 1064 individuals across 27 countries. For example, two sequenced DNA fragments from different individuals, AAGCCTA to AAGCTTA, contain a difference in a single nucleotide. In this case, it can be said that there are two alleles: C and T. Almost all common SNPs have only two alleles. The genomic distribution of SNPs is not homogeneous. SNPs usually occur in noncoding regions more frequently than in coding regions or, in general, where natural selection acts and fixes the allele of the SNP that constitutes the most favorable genetic adaptation. Besides natural selection, other factors like recombination and mutation rate can also determine SNP density. SNP density may be predicted by the presence of microsatellites, which are regions of thousands of nucleotides flanking microsatellites; they have an increased or decreased density of SNPs depending on the microsatellite sequence. One may consider genotype information across four SNPs from the v-akt murine thymoma viral oncogene homolog 1 (AKT1) gene. In addition to genotype information, each individual’s country of origin, gender, and ethnicity are recorded. For complete information on this study, visit http://www.stanford.edu/group/morrinst/hgdp.html.

From the work of Foulkes,[5] one may begin by specifying the location of the data:

> hgdpURL <-
+ "http://people.umass.edu/foulkes/asg/data/HGDP_AKT1.txt"

2.
The Functional SNPS Associated with Muscle Size and Strength (FAMuSS)
The FAMuSS study was conducted for identifying the genetic determinants of skeletal muscle size and strength before and after exercise training: A total of n = 1397 college student volunteers took part in the study, and data on 225 SNPs across multiple volunteers participated in the study and data on 225 SNPs across multiple genes were collected. The exercise involved students training their non-dominant arms for 12 weeks.
The primary objectives of the study were: (i) to identify genes associated with muscle performance, and specifically, (ii) to understand associations among SNPs and normal variation in volumetric MRI (on muscle, bone, subQ fat), muscle strength, response to training, and clinical markers of metabolic syndrome. The data are contained in a tab-delimited text file entitled FMS.data.txt and illustrated in the following table: Table 1

	Table 1 Sample of FAMuSS Data.

	fms.id
	actn3_r577x
	actn3_rs540874
	actn3_rs1815739
	actn3_1671064
	Term
	Gender
	Age
	Race
	NDRM.CH
	DRM.CH

	1  FA-1801
	CC
	GG
	CC
	AA
	02-1
	Female
	27
	Caucasian
	40.0
	40.0

	2  FA-1802
	CT
	GA
	TC
	GA
	02-1
	Male
	36
	Caucasian
	25.0
	0.0

	3  FA-1803
	CT
	GA
	TC
	GA
	02-1
	Female
	24
	Caucasian
	40.0
	0.0

	4  FA-1804
	CT
	GA
	TC
	GA
	02-1
	Female
	40
	Caucasian
	125.0
	0.0

	5  FA-1805
	CC
	GG
	CC
	AA
	02-1
	Female
	32
	Caucasian
	40.0
	20.0

	6  FA-1806
	CT
	GA
	TC
	GA
	02-1
	Female
	24
	Hispanic
	75.0
	0.0

	7  FA-1807
	TT
	AA
	TT
	GG
	02-1
	Female
	30
	Caucasian
	100.0
	0.0

	8  FA-1808
	CT
	GA
	TC
	GA
	<NA>
	<NA>
	NA
	<NA>
	NA
	NA

	9  FA-1809
	CT
	GA
	TC
	GA
	02-1
	Female
	28
	Caucasian
	57.1
	-14.3

	10 FA-1810
	CC
	GG
	CC
	AA
	02-1
	Male
	27
	Hispanic
	33.3
	0.0

	11 FA-1811
	CC
	GG
	CC
	AA
	<NA>
	<NA>
	NA
	<NA>
	NA
	NA

	12 FA-1812
	CT
	GA
	TC
	GA
	02-1
	Female
	30
	Caucasian
	20.0
	0.0

	13 FA-1813
	CT
	GA
	TC
	GA
	02-1
	Female
	20
	Caucasian
	25.0
	25.0

	14 FA-1814
	CT
	GA
	TC
	GA
	02-1
	Female
	23
	African Am
	100.0
	25.0

	15 FA-1815
	<NA>
	<NA>
	<NA>
	<NA>
	<NA>
	<NA>
	NA
	<NA>
	NA
	NA

	16 FA-1816
	TT
	GA
	TC
	GA
	02-1
	Female
	24
	Caucasian
	28.6
	12.5

	17 FA-1817
	CT
	GA
	TC
	GA
	<NA>
	<NA>
	NA
	<NA>
	NA
	NA

	18 FA-1818
	CT
	GA
	TC
	GA
	<NA>
	<NA>
	NA
	<NA>
	NA
	NA

	19 FA-1819
	CT
	GG
	CC
	AA
	02-3
	Male
	34
	Caucasian
	7.1
	-7.1

	20 FA-1820
	CC
	GA
	TC
	GA
	02-3
	Female
	31
	Caucasian
	75.0
	20.0


The data are in a tab-delimited text file FMS.data.txt in which the data for only 20 participants were listed. The file contains information on genotype across all SNPs, and a list of clinical and demographic factors for a subset (n = 1035) of the study participants. The following worked examples show the use of this data file in biostatistical analysis, using R, in genetic epidemiology. The approach follows that of Foulkes.[5]

Solution:

The following R code-segments may be used to produce Table 1:
> fmsURL <-
+ "http://people.umass.edu/foulkes/asg/data/FMS_data.txt"

> fms <- read.delim(file=fmsURL, header=T, sep="\t")

> attach(fms)

> data.frame(id, actn3_r577x, actn3_rs540874,
+ actn3_rs1815739, actn3_1671064, Term, Gender, Age, Race,
+ NDRM.CH,DRM.CH)[1:20,]

> # Outputting: Table 1 Sample of FAMuSS Data
Remarks:

(1)
The function attach() is used so that one can call each variable by its name  without having to indicate the corresponding dataframe. For example, after  submitting the command attach(fms) one can call the variable Gender  without reference to fms.
(2)
Alternately, one may write fms$Gender which is valid whether or not the  function attach() was used. A data frame must be re-attached at the start of a  new R session for the corresponding variable names to be recognized.
(3)
The numbers 1:20 within the square bracket […], and before the comma, are used to indicate that row numbers 1 through 20 are to be printed.

(4)
From this Table, it is seen that the genotype for id=FA-1801 at the first recorded SNP (r577x) within the gene actn3 is the pair of bases CC. In most cases, SNPs are bi-allelic, which means that two bases are observed within a site across individuals.
(5)
For example, for SNP r577x in gene actn3, the letters C and T are observed while at rs540874 in gene actn3, the two bases G and A are observed. This pairing is not restricted, that is A may be present with T, C, or G within another site, distinguishing this from the pairing of bases that occurs to form the DNA double helix within a single homolog (in which A always pairs with T, and C with G).

(6)
Recall, an individual is said to be homozygous if the two observed base pairs are the same at a given site and heterozygous if they differ. From Table 1, for example, one sees that an individual FA-1801 from the FAMuSS study is homozygous at actn3_rs540874 with the observed genotype equal to GG. Likewise, individual FA-1807 is homozygous at this site since the observed genotype is AA. However, individuals FA-1802, -1803, and –1804, on the other hand, are all heterozygous at actn3 rs540874 since their genotypes contain both the G and A alleles


Solution:
One may begin by specifying the web location of the data as follows:
> fmsURL <-
+       "http://people.umass.edu/foulkes/asg/data/FMS_data.txt"
then using the function read.delim() to extract the data into R directly from the 
website:

> fms <- read.delim(file=fmsURL, header=T, sep="\t")

Alternately, one may combine the previous two operations by using the following code segment:

> # Reading in FAMuSS data
> fms <- read.delim("http://people.umass.edu/foulkes/

+                     asg/data/FMS_data.txt", header=T, sep="\t")
Remarks:
(1)
By specifying header=T, one is indicating that the first row of the text file contains the variable names. Alternatively, one could have specified header=F, which assumes that the first line of the file is the first record of data.
(2)
One also indicates with the argument sep=“\t" that a tab separates each variable within a line of the data. Common alternative specifications are sep=",“ and sep=“ ”, indicating comma and space delimiters, respectively.
(3)
Other useful functions for reading data into R include read.table() and read.csv(), where csv stands for “comma-separated variables”.
(4)
The specifications given above are the default values for read.delim() and need not be written out explicitly. They are provided for the purpose of illustration.
(5)
A portion of the data on the first 20 individuals in this sample are displayed in Table 1. Included in this table are the genotypes for 4 SNPs within the actn3 gene and a few corresponding clinical and demographic parameters.
(6)
The variable Term indicates the year and term (1=spring, 2=summer, 3=fall) of recruitment into the study, and Gender, Age and Race are all self-declared values of these demographic factors.
(7)
The percent change in muscle strength before and after exercise training are given by NDRM.CH for the non-dominant arm and DRM.CH for the dominant arm.
(8)
Generation of the latex code for Table 1 is done in R using the function xtable() in the package xtable.
(9)
The function print() with the floating.environment option set equal to ’sidewaystable’ is used to generate a landscape table.
(10)
Alternatively, for any labeled SNPs, one can print the table in R as shown below:
> attach(fms)
> data.frame(id, actn3_r577x, actn3_rs540874,
+ actn3_rs1815739,actn3_1671064, Term, Gender, Age, Race,
+ NDRM.CH, DRM.CH) [1:20,]
(11)
One uses the function attach() so that one can call each variable by its name without having to indicate the corresponding dataframe. For example, after submitting the command attach(fms) one may call the variable Gender without reference to fms.
(12)
Alternately, one could write fms$Gender which is valid whether or not the function attach() was used.
(13)
A dataframe must be re-attached at the start of a new R-session for the corresponding variable names to be recognized.
(14)
The numbers 1:20 within the square bracket and before the comma are used to indicate that row numbers 1 through 20 are to be printed.
(15)
One sees from this Table that the genotype for id=FA-1801 at the first recorded SNP (r577x) within the gene actn3 is the pair of bases CC. In most cases, SNPs are bi-allelic, which means that two bases are observed within a site across individuals. For example, for r577x in gene actn3, the letters C and T are while at rs540874 in gene actn3, the two bases G and A are observed. This pairing is not restricted, that is A can be present with T, C or G within another site, distinguishing this from the pairing of bases that occurs to form the DNA double helix within a single homolog (in which A always pairs with T and C with G).
(16)
Recall, an individual is said to be homozygous if the two observed base pairs are the same at a given site and heterozygous if they differ. From Table 1, for example, one sees that individual FA-1801 from the FAMuSS study is homozygous at actn3 rs540874 with the observed genotype equal to GG.
(17)
Likewise, individual FA-1807 is homozygous at this site since the observed genotype is AA. Individuals FA-1802, 1803 and 1804, on the other hand, are all heterozygous at actn3 rs540874 since their genotypes contain both the G and A alleles.
(18)
Determination of a minor allele and its frequency is demonstrated in the following worked example using data from the FAMuSS study.

Solution:
To do this, one needs to calculate corresponding allele frequencies. First one determines the number of observations with each genotype for this SNP using the following code segment:
> fmsURL <-
http://people.umass.edu/foulkes/asg/data/FMS_data.txt
> fms <- read.delim(file=fmsURL, header=T, sep="\t")
> attach(fms)
> GenoCount <- summary(actn3_rs540874)
> GenoCount # Outputting:
AA
GA
GG
NA's
226
595
395
181
Remarks:
1.
In this case, one sees:
n = 226 individuals have the AA genotype,
n = 595 individuals have the GA genotype,
n = 395 individuals have the GG genotype, and
an additional n = 181 individuals are missing this genotype.
For simplicity, one may assume that this missing data is non-informative. That is, one makes the strong assumption that estimates of the allele frequencies would be the same had one observed the genotypes for these individuals.
2.
To calculate the allele frequencies, one may begin by determining a reduced sample size, that is, the number of individuals with complete data.
> NumbObs <- sum(!is.na(actn3_rs540874))
The genotype frequencies for AA, GA, and GG are then respectively given by:
> GenoFreq <- as.vector(GenoCount/NumbObs)
> GenoFreq # Outputting:
[1] 0.1858553
0.4893092
0.3248355
0.1488487
(3)
The frequencies of the A and G alleles are calculated as follows:
> FreqA <- (2*GenoFreq[1] + GenoFreq[2])/2
> FreqA
[1] 0.4305099
> FreqG <- (GenoFreq[2] + 2*GenoFreq[3])/2
> FreqG
[1] 0.5694901
Thus, one may report that A is the minor allele at this SNP locus with a frequency of 0.43. In this case, an individual is said to be homozygous rare at SNP
rs540874 if the observed genotype is AA.
(4)
Homozygous wildtype, on the other hand, refers to the state of having two copies of the more common allele, or the genotype GG in this case.
(5)
Alternatively, one may achieve the same result using the functions genotype() and summary() within the genetics package.
First one installs and uploads the R package as follows:
> install.packages("genetics")
> library(genetics)
Then create a genotype object and summarize the corresponding genotype and allele frequencies:
> Geno <- genotype(actn3_rs540874,sep="")
> summary(Geno) # Outputting:
Number of samples typed: 1216 (87%)
Allele Frequency: (2 alleles)

Count
Proportion
G
1385
0.57
A
1047
0.43
NA
362
NA
Genotype Frequency:

Count
Proportion
G/G
395
0.32
G/A
595
0.49
A/A
226
0.19
NA
181
NA

Heterozygosity (Hu) = 0.4905439

Poly. Inf. Content     = 0.3701245
Here one again sees that A corresponds to the minor allele at this SNP locus with a frequency of 0.43, while G is the major allele with a greater frequency of 0.57.
(6)
The attach() function is used so that one can call each variable by its name without having to indicate the corresponding dataframe. For example, after submitting the command attach(fms) one can call the variable Gender without reference to fms.
(7)
Alternatively, one could write fms$Gender which is valid whether or not the function attach() was used. A dataframe must be re-attached at the start of a new R-session for the corresponding variable names to be recognized.
(8)
The numbers 1:20 within the square bracket […], and before the comma, are used to indicate that row numbers 1 through 20 are to be printed.
(9)
From Table 1, it is seen that the genotype for id=FA-1801 at the first recorded SNP (r577x) within the gene actn3 is the pair of bases CC. In most cases, SNPs are bi-allelic, which means that two bases are observed within a site across individuals.
(10)
For example, for SNP r577x in gene actn3, the letters C and T are observed while at rs540874 in gene actn3, the two bases G and A are observed. This pairing is not restricted, that is A may be present with T, C, or G within another site, distinguishing this from the pairing of bases that occurs to form the DNA double helix within a single homolog (in which A always pairs with T, and C with G).
(11)
An individual is said to be homozygous if the two observed base pairs are the same at a given site and heterozygous if they differ. From Table 1, for example, one see that individual FA-1801 from the FAMuSS study is homozygous at actn3_rs540874 with the observed genotype equal to GG.
(12)
Likewise, individual FA-1807 is homozygous at this site since the observed genotype is AA. Individuals FA-1802, -1803, and -1804, on the other hand, are all heterozygous at actn3 rs540874 since their genotypes contain both the G and A alleles. Determination of a minor allele and its frequency is demonstrated in the following example using data from the FAMuSS study.
Further Information on Genetic Epidemiology
(1)
The journal Genetic Epidemiology is the official journal of the International Genetic Epidemiology Society. “It is a peer-reviewed record and forum for discussion of research on the distribution and determinants of human disease, with emphasis on possible familial and hereditary factors as revealed by genetic, molecular, and epidemiological investigations.”
(2)
A number of useful biostatistical R packages are listed in Foulkes,[5] including the CRAN package gap, for computations related to Applied Genetics as well as Genetic Epidemiology.
Splines Analysis in Biostatistics and Biomedical Investigations Splines[8,9]
The term spline is derived from a flexible strip of material commonly used by draftsmen to assist in drawing curved lines passing through a number of knots. In mathematics, a spline is a smooth polynomial function that is defined piecewise, and has a high degree of smoothness at the places where the polynomial pieces connect, which are known as the knots. In interpolating problems, spline interpolation is called polynomial interpolation because it yields similar results, even when using low-degree polynomials. In computer graphics, splines are popular curves because of the simplicity of their construction, their ease and accuracy of evaluation, and their capacity to approximate complex shapes through curve fitting and interactive curve design. The most commonly used splines are cubic spline, i.e., of order 3—in particular, cubic B-spline, viz., cubic basis spline. (A B-spline is a spline function that has minimal support with respect to a given degree, smoothness, and domain partition.) They are common in spline interpolation simulating the function of flat splines.
RRG Approximation: Within the area of approximation theory and variational mathematics, spline analysis is an application of the Rayleigh–Ritz–Galerkin Approximation Theory, which leads to the construction of basis functions for the spaces under consideration. The functions in R packages described in this section analytically may be used to construct the appropriate connecting functions (usually polynomials), viz., the splines, to provide an overall “smooth” correlation In biostatistical applications, splines are convenient mathematical tools for establishing correlation functions in data analysis for all applicable dimensions. A number of R packages are available for splines construction.
Splines Using R
Numerous CRAN packages provide various applicable spline functions for constructing splines using R. These are illustrated in the following worked examples:

The function ns() generates the B-splines basis matrix for a natural cubic spline.
Its usage formula is:
ns(x, df = NULL, knots = NULL, intercept = FALSE,
                                                  Boundary.knots = range(x))

in which the arguments are:

x
the predictor variable. Missing values are allowed.

df
degrees of freedom. One can supply df rather than knots; ns() then chooses df - 1 - intercept knots at suitably chosen quantiles of x (which will ignore missing values).

knots
breakpoints that define the spline. The default is no knots; together with the natural boundary conditions this results in a basis for linear regression on x. Typical values are the mean or median for one knot, quantiles for more knots. 

intercept
if TRUE, an intercept is included in the basis; default is FALSE.

Boundary.knots
boundary points at which to impose the natural boundary conditions and anchor the B-spline basis (default the range of the data). If both knots and Boundary.knots are supplied, the basis parameters do not depend on x. Data can extend beyond Boundary.knots
ns() generates a basis matrix for representing the family of piecewise-cubic splines with the specified sequence of interior knots, and the natural boundary conditions. These enforce the constraint that the function is linear beyond the boundary knots, which can either be supplied, else default to the extremes of the data. A primary use of this function is in modeling formula to directly specify a natural spline term in a model. The following R code-segments generate a natural B-spline to correlate the weight versus height in a dataframe of 15 U.S. women.

> require(splines) # Accessing the package splines

> library(splines) # Bringing up the contents of splines

> ls("package:splines") # Looking for the smoother spline function ns()
[1]
"as.polySpline"
"asVector"
"backSpline"
"bs"
[5]
"interpSpline"
"ns"
"periodicSpline"
"polySpline"
[9]
"spline.des"
"splineDesign"
"splineKnots"
"splineOrder"
[13]
"xyVector"
> require(graphics) # For graph plotting
> require(datasets)
> ls("package:datasets") # Accessing the dataframe women (abbreviated)
[1]
"ability.cov"
"airmiles"
"AirPassengers"
[4]
"airquality"
"anscombe"
"attenu"
[7]
"attitude"
"austres"
"beaver1"
………………………………………………………………………………….
[100]
"women"
"WorldPhones"
"WWWusage"
> women # Inspecting this dataframe:

height
weight

1
58
115

2
59
117

3
60
120

4
61
123

5
62
126

6
63
129

7
64
132

8
65
135

9
66
139

10
67
142

11
68
146

12
69
150

13
70
154

14
71
159

15
72
164
> require(glm2) # Accessing the improved Generalized Linear Model glm2
Loading required package: glm2
> library(glm2)
> ls("package:glm2") # Assessing the function glm2()
[1] "glm.fit2" "glm2"
> # Using B-splines with only 1 Degree of Freedom
> ns(women$height, df = 1)
> fm1 <- glm2(weight ~ ns(height, df = 1), data = women)
> plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
> ht <- seq(57, 73, length.out = 200)
> lines(ht, col = “red”, predict(fm1, data.frame(height=ht)))
> # Outputting: Figure 9.
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Figure 9 Using natural spline function ns(), with only one degree of freedom, to correlate weight vs. height for 15 U.S. women.
>
> # Using B-splines with 3 Degrees of Freedom
> ns(women$height, df = 3)
> fm3 <- glm2(weight ~ ns(height, df = 3), data = women)
> plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
> ht <- seq(57, 73, length.out = 200)
> lines(ht, col = “red”, predict(fm3, data.frame(height=ht)))
> # Outputting: Figure 10.
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Figure 10 Using natural spline function ns(), with three degrees of freedom, to correlate weight vs. height for 15 U.S. women.
Remarks:

(1)
For DF = 1, Figure 8 shows a linear regression line, The correlation seems to call for some improvement..
(2)
For DF = 3, Figure 9 shows that the regression line is satisfactory for correlation.
(3)
Analytical ANOVA results may be obtained by summary statements:
> summary(fm1) # For DF = 1
> summary(fm5) # For DF = 3
As the DF is increased, to, 4, 5, 6, …, the “smoothness” of the spline-correlation will be enhanced.

This methodology is a quantitative analysis of DCE-MRI typically involving the convolution of an arterial input function (AIF), with a non-linear pharmacokinetic model of the contrasting agent concentration. The function takes a semi- parametric penalized spline smoothing approach, with which the AIF is convolved with a set of B-splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines).
The usage formula is:
dcemri.spline(conc, time, img.mask, time.input=time,
model="weinmann", aif="tofts.kermode", user=NULL,
aif.observed=NULL, nriters=500, thin=5,
burnin=100, ab.hyper=c(1e-5,1e-5),
ab.tauepsilon=c(1,1/1000), k=4, p=25, rw=2,
knots=NULL, nlr=FALSE, t0.compute=FALSE,
samples=FALSE, multicore=FALSE, verbose=FALSE,
response=FALSE, fitted=FALSE,
...)
for which the arguments are:

conc
Matrix or array of concentration time series (last dimension must be time).

time
Time in minutes.

img.mask
Mask matrix or array. Voxels with mask = 0 will be excluded.
time.input
Time in minutes for observed arterial input function (default = ‘time’).

aif
is a character string that identifies the parameters of the arterial input function. Acceptable values are: tofts.kermode, fritz.hansen, or observed. If observed one must provide the observed concentrations in aif.observed.

user
...

aif.observed
is the user-defined vector of arterial concentrations observed at time.input (only for ‘aif’=observed).
silent
...
multicore
(logical) use the multicore package.
verbose
(logical) allows text-based feedback during execution of the function (default = FALSE).
samples
If TRUE output includes samples drawn from the posterior distribution for all parameters.
model.func
...

model.guess
...

nlr
If TRUE, a response model is fitted to the estimated response function.

model
Only if nlr = TRUE Response model fitted to the estimated response function. Acceptable values include: "AATH" or "weinmann" (default).

ab.hyper
Hyper priors for adaptive smoothness parameter

ab.tauepsilon
Hyper-prior parameters for observation error Gamma prior.

p
Number of knots of B-Spline basis.

t0.compute
If TRUE, the onset time will be estimated from response function.

k
Order of B-Splines.

knots
Vector of knots. Use this if you need unequally spaced knots.

rw
Order of random walk prior. Acceptable values are 1 and 2.

nriters
Total number of iterations.

thin
Thinning factor.

burnin
Number of iterations for burn-in.

response
If TRUE, the response functions per voxel are returned.

fitted
If TRUE, then fitted time curved per voxel are returned.

A
...

B
...

D
...

...
...

The maximum of the response function Fp for the masked region is provided by default. Where appropriate, response functions, fitted functions, and parameter estimates (along with their standard errors) are provided. All multi-dimensional arrays are provided in nifti format. The following R code-segments use the special spline function dcemri.spline() to correlate the MRI dataframe buckley (both the function and the dataframe are included in the CRAN package dcemriS4):

> install.packages("dcemriS4")
> require(dcemriS4)
Loading required package: dcemriS4

Loading required package: oro.nifti

Loading required package: bitops

Loading required package: XML
oro.nifti: Rigorous - NIfTI+ANALYZE+AFNI Input / Output (version = 0.3.3)
Loading required package: parallel
dcemriS4: A Package for Medical Image Analysis (version = 0.47)
> library(dcemriS4)

> ls("package:dcemriS4") # Inspecting the contents of dcemriS4
[1]
"ADC.fast"
"adc.lm"
"aif.orton.exp"
[4]
"aifParameters"
"breast"
"buckley"
[7]
"CA.fast"
"CA.fast2"
"compartmentalModel"

[10]
"conv.fft"
"dam"
"dcemri.bayes"
[13]
"dcemri.lm"
"dcemri.map"
"dcemri.spline"
[16]
"E10.lm"
"expConv"
"extract.aif"
> data("buckley")
> attach(“buckley”)
> buckley # Outputting (abbreviated):
>

time.sec
time.min
input
F0.17
F0.37
F0.57
1
0
0.00000000
0.0000000
0.000000000
0.00000000
0.00000000

2
1
0.01666667
0.2389262
0.000676957
0.00147338
0.00226980

3
2
0.03333333
0.4662278
0.001997940
0.00434845
0.00669896

………………………………………………………………………………………………………………...
301
300
5.00000000
1.5425668
0.746623000
0.79328100
0.80121500

F0.77
F0.97
PS0.01
PS0.17
PS0.49
PS0.65

1
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

2
0.00306622
0.00386264
0.00226980
0.00226980
0.00226980
0.00226980

3
0.00904948
0.01139380
0.00669896
0.00669896
0.00669896
0.00669896

………………………………………………………………………………………………………………...
301
0.80390100
0.80512900
0.18220100
0.72687500
0.81125200
0.81022300

Vp0.0001
Vp0.03
Vp0.09
Vp0.12
F0.4
F0.8

1
0.000000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

2
0.000994115
0.00226980
0.00226980
0.00226980
0.00159284
0.00318568

3
0.002912180
0.00668309
0.00669896
0.00669896
0.00470103
0.00940205

………………………………………………………………………………………………………………...
301
0.707941000
0.75465200
0.84814600
0.89497300
0.75752600
0.76038700

F1.2
F1.6
F2.0
PS0.0
PS0.17.1
PS0.51

1
0.00000000
0.00000000
0.0000000
0.00000000
0.00000000
0.00000000

2
0.00477852
0.00637136
0.0079642
0.00477852
0.00477852
0.00477852

3
0.01410040
0.01871590
0.0229741
0.01410000
0.01410020
0.01410060

………………………………………………………………………………………………………………...
301
0.76032500
0.76011900
0.7599500
0.12353700
0.71834300
0.75791200

PS0.68
Vp0.0001.1
Vp0.04
Vp0.12.1
Vp0.16

1
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

2
0.00477852
0.00118132
0.00477705
0.00477852
0.00477852

3
0.01410070
0.00345471
0.01336860
0.01410310
0.01410310

……………………………………………………………………………………………..
301
0.75423800
0.63638500
0.69819700
0.82283800
0.88526600

>
> xi <- seq(5, 300, by=5)
> img <- array(t(breast$data)[,xi], c(13,1,1,60))
> mask <- array(TRUE, dim(img)[1:3])
> time <- buckley$time.min[xi]
> # Generate AIF params using the orton.exp function from Buckley’s AIF
> aif <- buckley$input[xi]
> fit.spline <- dcemri.spline(img, time, mask, aif="fritz.hansen",
+                                             nriters=250, nlr=TRUE)
+ # Loading required package: minpack.lm
> fit.spline.aif <- dcemri.spline(img, time, mask, aif="observed",
+                          aif.observed=aif, nriters=250, nlr=TRUE)
> plot(breast$ktrans, fit.spline$ktrans, xlim=c(0,1), ylim=c(0,1),
+         xlab=expression(paste("True ", K^{trans})),
+         ylab=expression(paste("Estimated ", K^{trans})))
> points(breast$ktrans, fit.spline.aif$ktrans, pch=2)
> abline(0, 1, lwd=1.5, col="red")
> legend("right", c("fritz.hansen", "observed"), pch=1:2)
> # Outputting: Figure 11.
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Figure 11 Bayesian P-splines for dynamic contrast-enhanced MRI (dcemri) for data “buckley” using function dcemri.spline() in the CRAN package dcemriS4.

Within the CRAN package grofit, the function drBootSpline() passes the numeric vectors conc and test to the function drFitSpline(), which fits a smoothed spline to the data and estimates the EC50*. Then, calling drFitSpline() several times (specified by the options set in control), one may create a bootstrap sample of splines in the form of a list of objects of class drFitSpline to fit a specific dataset.
*EC50, the half maximal effective concentration refers to the concentration of a drug which induces a response halfway between the baseline and maximum after some specified exposure time. It is commonly used as a measure of drug's potency. The EC50 of a graded dose response curve therefore represents the concentration of a compound where 50% of its maximal effect is observed.
The usage formula is:
drBootSpline(conc, test, drID = "undefined",
control = grofit.control())

for which the arguments are:

conc
Numeric vector, containing concentration information for dose-response. curve fitting and EC50 estimation.
test
Numeric vector, containing response values related to concentrations.
drID
Character, identifying the dose-response data. 

control
Object of class grofit.control containing a list of options generated by the function grofit.control(). 

and generates an object of class drBootSpline, with the following parameters: 
raw.conc
Raw data given to the function; equivalent to conc.

raw.test
Raw data given to the function; equivalent to test.

drID
String identifier given to the function; equivalent to drID.

boot.conc
Table of concentration values per column, resulting from each spline fit of the bootstrap.

boot.test
Table of response values per column, resulting from each spline fit of the bootstrap.

boot.drSpline
List containing all drFitSpline objects generated by the call of drFitSpline.

ec50.boot
Vector of estimated EC50 values from each bootstrap entry.

bootFlag
Logical, indicating an empty bootstrap sample.

control
Object of class grofit.control containing list of options passed to the function as control.
The following R code-segments show an application of the function drBootSpline():
> require(grofit)

Loading required package: grofit
> # Setting up a sample dataset {(xi, yi)}, i = 1, 2, 3, …, 50:
> x <- 1:50
> y <- 30/(1+exp(-0.5*(25-x)))+rnorm(50)
> TestRun <- drBootSpline(x,y,"ID",grofit.control(nboot.dr=50))
=== Bootstrapping of dose response curve ==========

--- EC 50 -----------------------------------------

Mean:
25.1278078078078
StDev:
0.200452481440052
90% CI:

24.7980634758389
90% CI:
25.4575521397767

95% CI:

24.7349209441853
95% CI:
25.5206946714303
> print(summary(TestRun)) # Outputting:
meanEC50
sdEC50
ci90EC50.lo
ci90EC50.up
25.12781
0.2004525
24.79806
25.45755
ci95EC50.lo
ci95EC50.up
meanEC50.orig
24.73492
25.52069
25.12781
ci90EC50.orig.lo
ci90EC50.orig.up
24.79806
25.45755
ci95EC50.orig.up
ci95EC50.orig.lo
24.73492
25.52069

> plot(TestRun)
> # Outputting: Figures 12 and Figure 13.
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Figure 12 Values of EC50 splines computed by the function drBootSpline() in the CRAN package grofit.
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Figure 13 Histogram for values of EC50 computed by the function drBootSpline() in the CRAN package grofit.
Missing Data Analysis
The Theory of Missing data Mechanisms
Since the seminal work of Rubin,[10] in 1976, formalizing the statistical theory of missing data analysis, the concomitant advances in computing hardware and software (with code development as in SAS, SPSS, and now in R, for biostatistics in epidemiology and public health) have rendered the tasks of analyzing and processing large quantities of data readily manageable. A vast quantity of substantial work on missing data mechanisms are now available, represented by Rubin,[11] Little and Rubin,[12,13] Schafe,r[14] Molenberghs and Kenward,[15] and Daniels and Hogan.[16]
The basic theory of missing data analysis will be reviewed, identifying at least four categories of such data, This will be followed by worked examples illustrating typical solutions to such problems using R.
Let Y = (yij) denote an (n x K) rectangular dataset without missing data, with row yi = (yi1, yi2, yi3,…, yiK) in which yij is the value of the variable Yj for subject i .
(1)
Missing Completely at Random (MCAR)
For missing data, define a missing data indicator matrix M = (mij), such that
mij = {1, if yij is missing
{0, if yij is present
(1)
Thus the matrix M defines the pattern of missing data.
Given Y, the missing data mechanism may be characterized by the conditional distribution of M, viz., f (M |Y, ϕ), where ϕ denotes some unknown parameters:

if
f (M |Y, ϕ) = f (M | ϕ) for all Y and ϕ
(2)
then the data are called Missing Completely at Random (MCAR) – note that this assumption does not mean that the missing pattern itself is random, but rather that the missingness does not depend on the values of the data.
(2)
Missing at Random (MAR)
Now if Yobs denote the observed components of Y, and Ymis denote the missing components, then an assumption less restrictive than MCAR is that the missingness depends only on the observed component Yobs of Y, and not on the missing components, viz.,

if
f(M |Y, ϕ) = f(M | Yobs, ϕ) for all Ymis and ϕ
(3)
then the missing data mechanism is called Missing at Random (MAR).
(3)
Not Missing at Random (NMAR)
If the distribution of M depends on the missing values in the data matrix Y, then the missing mechanism is called Not Missing at Random (NMAR).
Finally, there is the category of
(4)
Missing by Design (MBD)
If the missingness is designed to be part of the overall investigation, viz., the missing data are resulting from part of the experimental design, then the missing mechanism is called Missing by Design (MBD).
Whereas it is expected that only a small fraction (less than 10%) of the total observed datasets are missing for the first three of missing data categories (MCAR, MAR, and NMAR), in general, the opposite is true for the fourth category (MBD). This is owing to quite special conditions, such as:
In an observational epidemiologic study which is usually very costly to conduct, mainly for financial and some other reasons, the investigator may choose to perform a small validation study to verify some specific aspects of the entire questionnaire data. Such a validation study therefore renders the remaining larger portion of the entire study to be considered as the MBD portion of the whole study. In the case of the Adventist Health Study – Part 2, AHS-2, (to be discussed later in some detail in the section ”Adventist Health Studies”), in which the life style of some 96,000 members of the Seventh-day Adventist Church are being studied, a sub-study of AHS-2 is the Adventist Religion and Health Study. The latter study is being conducted to compare the quality of the physical and mental health between Adventists and non- Adventists, so that the latter category is involved. Thus, this sub-study renders the non-participating cases of the larger main AHS-2 Study once again to be considered as the MBD portion of the entire study.
Owing to the profoundly common situations in which biostatisticians need to deal with the challenges of missing data analysis, a vast literature and computer software have been developed to meet the challenges. Particularly in observational epidemiology, a number of software are now available (both as open-source freeware and as proprietary tools). Whereas in the case of MBD, which is designed to be resolved the mission data by assumption, viz., the small validation study is assumed to provide a true representation of the entire population, for the first three categories of missing data analysis, elaborate statistical imputation procedures have been developed. The following worked problems will be presented to showcase these imputation algorithms for missing data analysis (MDA) using R.

The CRAN package mi, updated as of January 19, 2012, contained a number of operational functions, using R, for Missing Data Imputation and model checking for the three categories MCAR, MAR, and NMAR. In particular: the function mi.continuous() imputes univariate missing data using linear regression the function mi() generates a multiply imputed matrix applying the elementary functions iteratively to the variables with missingness in the data randomly imputing each variable and looping through until approximate convergence, and the function mi.hist(), designed for the construction of Multiple Imputation Histograms, plots the histogram of each variable of a dataset with missing data, including the plotting of its observed and imputed values.
The usage formulas of these three functions are:
(a)
mi.continuous(formula,data=NULL,start=NULL,n.iter=100,
draw.from.beta=TRUE,missing.index=NULL, ...)
for which the arguments are:
formula
an object of class ’"formula"’ (or one that can be coerced to that class): a symbolic description of the model to be fitted.
data
A data frame containing the incomplete data and the matrix of the complete predictors.
start
Starting value for bayesglm.
n.iter
Maximum number of iteration for bayesglm. The default is 100.
draw.from.beta
Draws from posterior distribution of the betas to add randomness.

missing.index
The index of missing units of the outcome variable

...
(Currently not used.)
and the output values are:
model
A summary of the fitted model.
expected
The expected values estimated by the model.
random
Vector of random predicted values obtained by using the normal distribution.
(b)
mi(object, n.iter = 30,R.hat = 1.1, max.minutes = 20,
rand.imp.method = "bootstrap",
run.past.convergence = FALSE, seed = NA)
for which the arguments are:
object
A data frame or an mi object that contains an incomplete data.
mi
identifies NAs as the missing data.
info
The mi.info object.
n.imp
The number of multiple imputations. Default is 3 chains.
n.iter
The maximum number of imputation iterations. Default is 30 iterations.
R.hat
The value of the R.hat statistic used as a convergence criterion. Default is 1.1.

max.minutes
The maximum minutes to operate the whole imputation process. Default is 20 minutes.
rand.imp.method
The methods for random imputation. Currently, mi implements only the bootstrap method.
run.past.convergence
Default is FALSE. If the value is set to be TRUE, mi will run until the values of either n.iter or max.minutes are reached even if the imputation is converged.
seed
The random number seed.
check.coef.convergence
Default is FALSE. If the value is set to be TRUE, mi will check the convergence of the coefficients of imputation models.
add.noise
A list of parameters for controlling the process of adding noise to mi via noise.control.
and the output values are multiple imputations for incomplete data using iterative regression imputation.
If the variables with missingness are a matrix Y with columns Y(1), Y(2), Y(3), . . ., Y(K) and the fully observed predictors are X, this calls for first imputing all the missing Y values using some crude approach (for example, choosing imputed values for each variable by randomly selecting from the observed outcomes of that variable); and then:
 SHAPE  \* MERGEFORMAT 



imputing Y(1) given Y(2), . . ., Y(K) and X;
 SHAPE  \* MERGEFORMAT 



imputing Y(2) given Y(1), Y(3), . . ., Y(K) and X (using the newly imputed values for Y(1)),
and so forth, randomly imputing each variable and looping through until approximate convergence.
mi.hist(object, Yobs, ...)
for which the arguments are:
Yobs
observed values.
object
imputed values or member object of mi.method object family.
...
Other options for plot function.
and the outputs are:
The histogram (in black) of the complete variable,
the histogram (in blue) of the observed values, and
the histogram (in red) of the imputed values.

The following R code-segments:

 SHAPE  \* MERGEFORMAT 



Create a dataset {(xi, yi)},

 SHAPE  \* MERGEFORMAT 



Create some artificial missingness on y = (yi),

 SHAPE  \* MERGEFORMAT 



Use the functions mi.continuous() and mi() to impute the missing data and finally

 SHAPE  \* MERGEFORMAT 



Use the function mi.hist() to plot the histograms for the complete variable, then the observed value, and finally the imputed values.
> install.packages("mi")
> require(mi)

Loading required package: mi

Loading required package: MASS

Loading required package: nnet

Loading required package: car

Loading required package: arm

Loading required package: Matrix

Loading required package: lattice
Attaching package: ‘Matrix’
The following object(s) are masked from ‘package:base’:
det
Loading required package: lme4
Attaching package: ‘lme4’
The following object(s) are masked from ‘package:stats’:
AIC, BIC
Loading required package: R2WinBUGS

Loading required package: coda
Attaching package: ‘coda’
The following object(s) are masked from ‘package:lme4’:
HPDinterval
Loading required package: abind

Loading required package: foreign
arm (Version 1.5-05, built: 2012-6-6)
Working directory is C:/Users/bertchan/Documents
Attaching package: ‘arm’
The following object(s) are masked from ‘package:coda’:
traceplot
> library(mi)
> ls("package:mi") # Inspecting the contents of mi (abbreviated)
[1]
"bayesglm.mi"
"bayespolr.mi"
……………………………………………………….
[21]
"mi"
"mi.binary"
[23]
"mi.categorical"
"mi.completed"
[25]
"mi.continuous"
"mi.copy"
[27]
"mi.count"
"mi.data.frame"
[29]
"mi.fixed"
"mi.hist"
…………………………………………………………
[57]
"typecast"
"write.mi"
> # true data
> x<-rnorm(100,0,1) # N(0,1)
> y<-rnorm(100,(1+2*x),1.2) # y ~ 1 + 2*x + N(0,1.2)
> # create artificial missingness on y
> y[seq(2,100,10)]<-NA
> dat.xy <- data.frame(x,y)
> # Imputation:
> dat.cont.mi <- mi.continuous(y~x, data = dat.xy)
> mi.hist(dat.cont.mi, y)
> # Outputting: Figure 14.
> # imputation
> dat.mi <- mi(dat.xy)
Beginning Multiple Imputation (Thu Jul 19 22:23:22 2012):

Iteration 1
Chain 1 : y*
Chain 2 : y*
Chain 3 : y*
Iteration 2
………………………………

Iteration 30
Chain 1 : y
Chain 2 : y
Chain 3 : y
mi converged (Thu Jul 19 22:23:28 2012)
Run 20 more iterations to mitigate the influence of the noise...

Beginning Multiple Imputation (Thu Jul 19 22:23:28 2012):

Iteration 1
Chain 1 : y
Chain 2 : y
Chain 3 : y
Iteration 2
………………………………

Iteration 20
Chain 1 : y
Chain 2 : y
Chain 3 : y
mi converged (Thu Jul 19 22:23:32 2012)
> mi.hist(imp(dat.mi,1)[["y"]], y)
> # Outputting: Figure 15
mi" "bayespolr.mi" "bugs.mi" "call.mi"
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Figure 14 Before imputation.
Figure 15 After imputation.
Histograms of the complete variable (in black), observed values (in blue), and imputed values (in red). Missing data analysis by imputation using the functions mice() and complete() in the CRAN package mice.
The CRAN package mice (multivariate imputations by chained equations) published on July 4, 2012, by Van Buuren et al.,[17–19] contains functions that may be called upon to undertake multiple imputation using fully conditional specification (FCS) implemented by the MICE algorithm. Each variable has its own imputation model. Built-in imputation models are available for continuous data (including predictive mean matching, normal), binary data (logistic regression), unordered categorical data (polytomous logistic regression), and ordered categorical data (proportional odds). MICE can also impute continuous two-level data (normal model, pan, second-level variables). Passive imputation can be used to maintain consistency between variables. Various diagnostic plots are available to express the quality of the imputations.
The Sample Dataset nhanes: A small data set with non-monotone missing values.
Two functions from the package mice will be used, they are mice() and complete(), and their usage formulas are
(a)
mice(data, m = 5,
method = vector("character",length=ncol(data)),
predictorMatrix = (1 - diag(1, ncol(data))),
visitSequence = (1:ncol(data))[apply(is.na(data),2,any)],
post = vector("character", length = ncol(data)),
defaultMethod = c("pmm","logreg","polyreg","polr"),
maxit = 5,
diagnostics = TRUE,
printFlag = TRUE,
seed = NA,
imputationMethod = NULL,
defaultImputationMethod = NULL,
data.init = NULL,
...
)
for which the arguments are:
data
A data frame or a matrix containing the incomplete data. Missing values are coded as NA.
m
Number of multiple imputations. The default is m=5.
Method
Can be either a single string, or a vector of strings with length ncol(data).
predictorMatrix
A square matrix of size ncol(data) containing 0/1 data specifying the set of predictors to be used for each target column.
visitSequence
A vector of integers of arbitrary length, specifying the column indices of the visiting sequence.
post
A vector of strings with length ncol(data), specifying expressions.
defaultMethod
A vector of three strings containing the default imputation methods for numerical columns, factor columns with 2 levels, and columns with (unordered or ordered) factors with more than two levels, respectively.
maxit
A scalar giving the number of iterations. The default is 5.
diagnostics
A Boolean flag. If TRUE, diagnostic information will be appended to the value of the function. If FALSE, only the imputed data are saved. The default is TRUE.
printFlag
If TRUE, mice will print history on console. Use print=FALSE for silent computation.
seed
An integer that is used as argument by the set.seed() for offsetting the random number generator. Default is to leave the random number generator alone.
imputationMethod
Same as method argument. Included for backwards compatibility.
defaultImputationMethod
Same as defaultMethod argument. Included for backwards compatibility.
data.init
A data frame of the same size and type as data, without missing data, used to initialize imputations before the start of the iterative process.
... 
Named arguments that are passed down to the elementary imputation functions.
with the result that this function mice() generates multiple imputations for incomplete multivariate data by Gibbs sampling. Missing data can occur anywhere in the data. The algorithm imputes an incomplete column by generating ’plausible’ synthetic values given other columns in the data. Each incomplete column then acts as a target column, and has its own specific set of predictors. The default set of predictors for a given target consists of all other columns in the data. For predictors that are incomplete themselves, the most recently generated imputations are used to complete the predictors prior to imputation of the target column.
(b)
complete(x, action=1, include=FALSE)
for which the arguments are:
x
An object of class mids as created by the function mice().
action
If action is a scalar between 1 and x$m, the function returns the data with imputation number action filled in:
action=1 returns the first completed data set,
action=2 returns the second completed data set, etc.
include Flag to indicate whether the original data with the missing values should be included. This requires that action is specified as "long", "broad", or "repeated".
with the result that the argument action can also be a string, which is partially matched as follows:
 SHAPE  \* MERGEFORMAT 



"long" produces a long data frame of vertically stacked imputed data sets with nrow(x$data) *x$m rows and ncol(x$data)+2 columns.
 SHAPE  \* MERGEFORMAT 



"broad" produces a broad data frame with nrow(x$data) rows and ncol(x$data) * x$m columns.
 SHAPE  \* MERGEFORMAT 



"repeated" produces a broad data frame with nrow(x$data) rows and ncol(x$data) * x$m columns.
The output is a data frame with the imputed values filled in.
Thus, complete() creates a Complete Flat File from a Multiply Imputed Data Set. And, it takes an object of class mids, fills in the missing data, and returns the completed data in a specified format.
The dataset used is nhanes, from Schafer,[14] which a data frame with 25 observations on the following 4 variables:
age
Age group (1=20-39, 2=40-59, 3=60+)

bmi
Body mass index (kg/m2)

hyp
Hypertensive (1=no, 2=yes)

chl
Total serum cholesterol (mg/dL)
The following program, in R code-segments:

 SHAPE  \* MERGEFORMAT 



Loads the dataset nhanes,

 SHAPE  \* MERGEFORMAT 



Uses mice(nhanes) to create 5 imputed data sets, and

 SHAPE  \* MERGEFORMAT 



Use the function complete(imp) to print the first imputed data set.
> install.packages("mice")
> require(mice)

Loading required package: mice

Loading required package: MASS

Loading required package: nnet

Loading required package: lattice

mice 2.13 2012-06-30
> ls("package:mice") # (abbreviated)
[1]
"appendbreak"
"as.mira"
……………………………………………………………...

[9]
"ccn"
"complete"
……………………………………………………………...

[37]
"mice"
"mice.impute.2l.norm"
……………………………………………………………...
[97]
"xyplot.mids"
> data(nhanes)
> attach(nhanes)
> nhanes # Inspecting the dataset

age
bmi
hyp
chl

1
1
NA
NA
NA

2
2
22.7
1
187

3
1
NA
1
187

4
3
NA
NA
NA

5
1
20.4
1
113

6
3
NA
NA
184

7
1
22.5
1
118

8
1
30.1
1
187

9
2
22.0
1
238

10
2
NA
NA
NA

11
1
NA
NA
NA

12
2
NA
NA
NA

13
3
21.7
1
206

14
2
28.7
2
204

15
1
29.6
1
NA

16
1
NA
NA
NA

17
3
27.2
2
284

18
2
26.3
2
199

19
1
35.3
1
218

20
3
25.5
2
NA

21
1
NA
NA
NA

22
1
33.2
1
229

23
1
27.5
1
131

24
3
24.9
1
NA

25
2
27.4
1
186
> install.packages("mice")
> imp <- mice(nhanes) # Create 5 imputed datasets
iter
imp
variable

1
1
bmi
hyp
chl

1
2
bmi
hyp
chl

1
3
bmi
hyp
chl

1
4
bmi
hyp
chl

1
5
bmi
hyp
chl

2
1
bmi
hyp
chl

2
2
bmi
hyp
chl

2
3
bmi
hyp
chl

2
4
bmi
hyp
chl

2
5
bmi
hyp
chl

3
1
bmi
hyp
chl

3
2
bmi
hyp
chl

3
3
bmi
hyp
chl

3
4
bmi
hyp
chl

3
5
bmi
hyp
chl

4
1
bmi
hyp
chl

4
2
bmi
hyp
chl

4
3
bmi
hyp
chl

4
4
bmi
hyp
chl

4
5
bmi
hyp
chl

5
1
bmi
hyp
chl

5
2
bmi
hyp
chl

5
3
bmi
hyp
chl

5
4
bmi
hyp
chl

5
5
bmi
hyp
chl
> complete(imp) # Print the first imputed data set

age
bmi
hyp
chl

1
1
29.6
1
187

2
2
22.7
1
187

3
1
29.6
1
187

4
3
20.4
1
229

5
1
20.4
1
113

6
3
21.7
1
184

7
1
22.5
1
118

8
1
30.1
1
187

9
2
22.0
1
238

10
2
27.4
2
206

11
1
30.1
1
229

12
2
22.7
1
187

13
3
21.7
1
206

14
2
28.7
2
204

15
1
29.6
1
187

16
1
30.1
1
187

17
3
27.2
2
284

18
2
26.3
2
199

19
1
35.3
1
218

20
3
25.5
2
204

21
1
20.4
1
187

22
1
33.2
1
229

23
1
27.5
1
131

24
3
24.9
1
206

25
2
27.4
1
18
> ls("package:mice")
This now becomes the dataframe with the imputed missing data.

The body mass index (BMI) is an epidemiologically convenient measure for human body fat based on a person’s weight and height. (BMI does not actually measure the percentage of body fat.) It is defined as the person’s body mass divided by the square of his height which provides a unit of kg/m2.
BMI = Mass (kg) /{Height (m)}2
The object is to obtain a dataset by combining two datasets: krul data (1257 persons) and the mgg data (803 persons).[16] The krul dataset contains height and weight (both measured and self-reported) from 1257 Dutch adults, and the mgg dataset contains self-reported height and weight for 803 Dutch adults. Again, using the functions mice() and complete(), from the CRAN package mice, missing measured data may be imputed in the mgg data, and so correcting prevalence estimates may be computed.
The usage formula is:
data(selfreport)
The data frame selfreport consists of 2060 (= 1257 + 803) rows and 15 variables whose format is:
src
Study, either krul or mgg (factor)

id
Case-subject identification number

pop
Population, all NL (factor)

age
Age of respondent in years

sex
Gender of respondent (factor)

hm
Height measured (cm)

wm
Weight measured (kg)

hr
Height reported (cm)

wr
Weight reported (kg)

prg
Pregnancy (factor), all Not pregnant

edu
Educational level (factor)

etn
Ethnicity (factor)

web
Obtained through web survey (factor)

bm
BMI measured (kg/m2)

br
BMI reported (kg/m2)

The following program, in R code-segments:

 SHAPE  \* MERGEFORMAT 



loads the package mice,
 SHAPE  \* MERGEFORMAT 



loads the dataset selfreport,
 SHAPE  \* MERGEFORMAT 



recalculates the BMI,

 SHAPE  \* MERGEFORMAT 



uses the function mice() to create the missing data,
 SHAPE  \* MERGEFORMAT 



uses the function complete() to impute dataset, then
 SHAPE  \* MERGEFORMAT 



displays the imputed dataset.

> install.packages("mice")
> require(mice)
Loading required package: mice

Loading required package: MASS

Loading required package: nnet

Loading required package: lattice

mice 2.13 2012-06-30
> ls("package:mice") # Inspecting the contents of the package mice (abbreviated)
[1]
"appendbreak"
"as.mira"
………………………………………………………….

[9]
"ccn"
"complete"
………………………………………………………….
[37]
"mice"
"mice.impute.2l.norm"
………………………………………………………….

[85]
"selfreport"
"squeeze"
………………………………………………………….

[97]
"xyplot.mids"
> data(selfreport)
> attach(selfreport)
The following object(s) are masked from 'nhanes':
age
> selfreport # Inspecting the contents of the dataset selfreport (abbreviated)

src
id
pop
age
sex
hm
wm
hr
wr
prg
edu

1
mgg
10001
NL
27
Male
NA
NA
190.0
85.0
<NA>
Middle

2
mgg
10002
NL
38
Male
NA
NA
189.0
93.0
<NA>
Low

3
mgg
10003
NL
21
Male
NA
NA
200.0
110.0
<NA>
Low

………………………………………………………………………………………..……………………………………………………….
800
mgg
10900
NL
60
Male
NA
NA
172.0
81.0
<NA>
Middle

801
mgg
10901
NL
63
Female
NA
NA
181.0
90.0
Not pregnant
Low

802
mgg
10902
NL
74
Female
NA
NA
166.0
58.0
Not pregnant
Low

803
mgg
10903
NL
74
Female
NA
NA
156.0
72.0
Not pregnant
Low

3950
krul
11001
NL
38
Female
172.3
60.9
173.0
60.0
<NA>
<NA>

3951
krul
11002
NL
30
Female
169.4
63.2
168.0
62.0
<NA>
<NA>

3952
krul
11009
NL
43
Female
165.9
85.0
165.0
87.0
<NA>
<NA>

………………………………………………………………………………………..……………………………………………………….

5206
krul
17079
NL
28
Male
180.1
70.0
180.0
72.0
<NA>
<NA>

etn
web
bm
br

1
Autochtone
No
NA
23.54571

2
Autochtone
No
NA
26.03511

3
Autochtone
No
NA
27.50000

……………………………………………………………

800
Autochtone
Yes
NA
27.37966

801
Autochtone
Yes
NA
27.47169

802
Autochtone
No
NA
21.04805

803
Autochtone
No
NA
29.58580

……………………………………………………………

3950
<NA>
No
20.51383
20.04745

3951
<NA>
No
22.02370
21.96712

3952
<NA>
No
30.88347
31.95592

……………………………………………………………

5206
<NA>
No
21.58095
22.22222
> md.pattern(selfreport[,c("age","sex","hm","hr","wm","wr")])
age
sex
hr
wr
hm
wm
> # Outputting:
1257
1
1
1
1
1
1
0

803
1
1
1
1
0
0
2


0
0
0
0
803
803
1606
> bmi <- function(h,w){return(w/(h/100)^2)}
> init <- mice(selfreport,maxit=0)
> meth <- init$meth
> meth["bm"] <- "~bmi(hm,wm)"
> pred <- init$pred
> pred[,c("src","id","web","bm","br")] <- 0
> imp <- mice(selfreport, pred=pred, meth=meth, seed=66573,
+ maxit=2, m=1)
> # Outputting:
iter
imp
variable

1
1
hm
wm
edu
etn
bm

2
1
hm
wm
edu
etn
bm
> ## imp <- mice(selfreport, pred=pred, meth=meth,
> #                          seed=66573, maxit=20, m=10)
> cd <- complete(imp, 1)
> xy <- xy.coords(cd$bm, cd$br-cd$bm)
> plot(xy,col=mdc(2),xlab="Measured BMI",ylab="Reported –
+ Measured BMI", xlim=c(17,45),ylim=c(-5,5), type="n",lwd=0.7)
> # Outputting: Figure 16.
> polygon(x=c(30,20,30),y=c(0,10,10),col="grey95",border=NA)
> # Outputting: Figure 17.
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Figure 16
Figure 17
> polygon(x=c(30,40,30),y=c(0,-10,
+                 -10),col="grey95",border=NA) # Outputting: Figure 18.
> abline(0,0,lty=2,lwd=0.7) # Outputting: Figure 19.
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Figure 18
Figure 19
> idx <- cd$src=="krul"
> xyc <- xy; xyc$x <- xy$x[idx]; xyc$y <- xy$y[idx]
> xys <- xy; xys$x <- xy$x[!idx]; xys$y <- xy$y[!idx]
> points(xyc,col=mdc(1), cex=0.7) # Outputting: Figure 20.
> points(xys,col=mdc(2), cex=0.7) # Outputting: Figure 21.
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Figure 20
Figure 21
> lines(lowess(xyc),col=mdc(4),lwd=2) # Outputting: Figure 22.
> lines(lowess(xys),col=mdc(5),lwd=2) # Outputting: Figure 23.
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Figure 22
Figure 23
> text(1:4,x=c(40,28,20,32),y=c(4,4,-4,-4),cex=3)
> # Outputting: Figure 24.
> box(lwd=1, col = “green”) # Outputting: Figure 25.
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Figure 24
Figure 25
Bioconductor Case Studies[20]
Bioconductor is a software project to develop tools for computational biology. It is based on the R language. Hence, be familiar with R before using Bioconductor.
Bioconductor packages provide interactive tools for carrying out a number of different computational tasks.
One of the important Bioconductor packages is annotate. This package provides access to various genomic annotation data and makes use of various web resources and pre-compiled data packages to provide tools for exploring biological data.
In the R environment, the Bioconductor software has fast becoming a tool for the understanding and analysis of genomics experimental data. In modern molecular biology, its applications have been well received. It is widely applied in:

 SHAPE  \* MERGEFORMAT 



Importing and processing of data,

 SHAPE  \* MERGEFORMAT 



Biostatistical modeling

 SHAPE  \* MERGEFORMAT 



Biological metadata analysis

 SHAPE  \* MERGEFORMAT 



Graphics

 SHAPE  \* MERGEFORMAT 



Gene set enrichment analysis
 SHAPE  \* MERGEFORMAT 



Solving problems in classification and clustering

From within the R environment, to access the Bioconductor world, start with:
> library("Biobase")

Welcome to Bioconductor

Vignettes contain introductory material. To view, type

'browseVignettes()'. To cite Bioconductor, see

'citation("Biobase")' and for packages 'citation("pkgname")'.

>
Over 70 packages have been uploaded: the following worked example is one of them:
The bioconductor Package biovizBase[20]
The biovizBase package provides a set of utilities and color schemes serving as the basis for visualizing biological data, including genomic data. This package introduces color schemes and different utilities functions using simple examples and data sets. Utilities includes functions that process raw data.
The package aims provides a set of default color schemes for biological data, based on the following principles.
 SHAPE  \* MERGEFORMAT 



Making biological sense: data is displayed in a way that is similar to observed results under the microscope. (e.g., Giemsa stain results)

 SHAPE  \* MERGEFORMAT 



Generating attractive colors based on well-defined color sets.

 SHAPE  \* MERGEFORMAT 



Accommodating colorblind vision by creating color pallets that pass the color blind check on the Vis-check website 2 or use palette from package dichromat or use color-blind safe color palette checked by ColorBrewer website3. There are three types of colorblind checking strategy defined on these website.

1.
Deuteranope a form of red/green color de_cit;

2.
Protanope another form of red/green color de_cit;

3.
Tritanope a blue/yellow de_cit- very rare.
Users may change the default color in the options to personalize the global color scheme to fit ones needs.
> library(biovizBase)
biovizBase serves as a basis for the visualization of biological data, especially for genomic data.
The following example illustrate the versatility of the bioconductor package biovizBase:

The following program (obtainable from the Vignette Source), in R code-segments, illustrates some applications of the Biocoductor package biovizBase:
> R version 2.14.2 (2012-02-29)
> ### R code from vignette source
> ###'vignettes/biocGraph/inst/doc/layingOutPathways.Rnw'
> source("http://bioconductor.org/biocLite.R")
> BiocInstaller version 1.2.1, ?biocLite for help
> biocLite("biovizBase")
BioC_mirror: 'http://www.bioconductor.org'

Using R version 2.14, BiocInstaller version 1.2.1.

Installing package(s) 'biovizBase'

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)

trying URL 'http://www.bioconductor.org/packages/2.9/bioc/bin/windows/contrib/2.14/biovizBase_1.0.4.zip'

Content type 'application/zip' length 1006309 bytes (982 Kb)

opened URL

downloaded 982 Kb
package ‘biovizBase’ successfully unpacked and MD5 sums checked
The downloaded packages are in
C:\Users\...
Old packages: 'coda', 'deSolve', 'frailtypack', 'PK', 'robustbase', 'stringr', 'urca', 'vars'

Update all/some/none? [a/s/n]: n
> options(width=72)
>
> library(biovizBase)
> # library(scales)
>
> # R code from vignette source
> # 'vignettes/biocGraph/inst/doc/layingOutPathways.Rnw'
> head(blind.pal.info)
maxcolors category pkg pal.id
BluetoGray.8 8 div dichromat 1

BluetoOrange.8 8 div dichromat 2

BrowntoBlue.10 10 div dichromat 3

BluetoOrange.10 10 div dichromat 4

PiYG 11 div RColorBrewer 5

PRGn 11 div RColorBrewer 6
> # with no arguments, return blind.pal.info
> head(colorBlindSafePal())

maxcolors
category
pkg
pal.id
BluetoGray.8
8
div
dichromat
1

BluetoOrange.8
8
div
dichromat
2

BrowntoBlue.10
10
div
dichromat
3

BluetoOrange.10
10
div
dichromat
4

PiYG
11
div
RColorBrewer
5

PRGn
11
div
RColorBrewer
6
> ##
> mypalFun <- colorBlindSafePal("Set2")
> # mypalFun(12, repeatable = FALSE) #only three
> mypalFun(11, repeatable = TRUE) #repeat
[1]
"#66C2A5"
"#FC8D62"
"#8DA0CB"
"#66C2A5"
"#FC8D62"
"#8DA0CB"
[7]
"#66C2A5"
"#FC8D62"
"#8DA0CB"
"#66C2A5"
"#FC8D62"
> # for palette "Paried"
> mypalFun <- colorBlindSafePal(21)
> par(mfrow = c(1, 3))
> showColor(mypalFun(4)) # Outputting: Figure 26.
> library(dichromat)
> showColor(dichromat(mypalFun(4), "deutan")) # Figure 27.
> showColor(dichromat(mypalFun(4), "protan")) # Figure 28
>
[image: image96.jpg]



Figure 26 biovizBase {Bioconductor}.
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Figure 27 biovizBase {Bioconductor}.
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Figure 28 biovizBase {Bioconductor}.
>
> getOption("biovizBase")$cytobandColor

gneg
gpos25
gpos50
gpos75
gpos100
gvar
stalk
acen
"grey100"
"grey90"
"grey70"
"grey40"
"grey0"
"grey100"
"brown3"
"brown4"
> getBioColor("CYTOBAND")

gneg
gpos25
gpos50
gpos75
gpos100
gvar
stalk
acen
"grey100"
"grey90"
"grey70"
"grey40"
"grey0"
"grey100"
"brown3"
"brown4"
> # differece source from default or options.
> opts <- getOption("biovizBase")
> opts$DNABasesNColor[1] <- "red"
> options(biovizBase = opts)
> ## get from option(default)
> getBioColor("DNA_BASES_N")

A
T
G
C
N
"red"
"
#2C7BB6"
"#D7191C"
"#FDAE61"
"#FFFFBF"
> # get default fixed color
> getBioColor("DNA_BASES_N", source = "default")

A
T
G
C
N
"#ABD9E9"
"#2C7BB6"
"#D7191C"
"#FDAE61"
"#FFFFBF"
> seqs <- c("A", "C", "T", "G", "G", "G", "C")
> ## get colors for a sequence.
> getBioColor("DNA_BASES_N")[seqs]

A
C
T
G
G
G
C
"red"
"
#FDAE61"
"#2C7BB6"
"#D7191C"
"#D7191C"
"#D7191C"
"#FDAE61"
> cols <- getBioColor("CYTOBAND")
> plotColorLegend(cols, title = "cytoband")
> # Outputting: Figure 29.
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Figure 29 biovizBase {Bioconductor}.
>
> par(mfrow = c(1, 3))
> cols <- getBioColor("STRAND")
> showColor(cols) # Figure 30.
> showColor(dichromat(cols, "deutan")) # Figure 31.
> showColor(dichromat(cols, "protan")) # Figure 32.
>
[image: image100.jpg]



Figure 30 biovizBase {Bioconductor}.
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Figure 31 biovizBase {Bioconductor}.
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Figure 32 biovizBase {Bioconductor}.
> getBioColor("DNA_BASES_N")

A
T
G
C
N
"red"
"
#2C7BB6"
"#D7191C"
"#FDAE61"
"#FFFFBF"
> par(mfrow = c(1, 3))
> cols <- getBioColor("DNA_BASES_N", "default")
> showColor(cols, "name") # Figure 33.
> cols.deu <- dichromat(cols, "deutan")
> names(cols.deu) <- names(cols)
> cols.pro <- dichromat(cols, "protan")
> names(cols.pro) <- names(cols)
> showColor(cols.deu, "name") # Figure 34.
> showColor(cols.pro, "name") # Figure 35.
>

[image: image103.jpg]



Figure 33 biovizBase {Bioconductor}.
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Figure 34 biovizBase {Bioconductor}.
[image: image105.jpg]



Figure 35 biovizBase {Bioconductor}.
>
> library(GenomicRanges)
> set.seed(1)
> N <- 500
> gr <- GRanges(seqnames =

+                sample(c("chr1", "chr2", "chr3", "chrX", "chrY"),

+                           size = N, replace = TRUE),

+                IRanges(

+                           start = sample(1:300, size = N, replace = TRUE),

+                           width = sample(70:75, size = N,replace = TRUE)),

+                strand = sample(c("+", "-", "*"), size = N,

+                   replace = TRUE),

+                value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),

+                group = sample(c("Normal", "Tumor"),

+                   size = N, replace = TRUE),

+                pair = sample(letters, size = N,

+                   replace = TRUE))
> head(addSteppings(gr))
GRanges with 6 ranges and 5 elementMetadata values:

seqnames
ranges
strand
|
value
score
group

<Rle>
<IRanges>
<Rle>
|
<numeric>
<numeric>
<character>
chr1.1
chr1 [160, 232]
-
|
12.994463
118.45194
Normal
chr1.2
chr1 [141, 213]
-
|
9.350873
92.11885
Normal
chr1.3
chr1 [  39, 113]
*
|
12.289738
65.92753
Tumor
chr1.4
chr1 [242, 314]
-
|
6.971489
102.75172
Normal
chr1.5
chr1 [  84, 158]
+
|
9.309577
133.85467
Tumor
chr1.6
chr1 [102, 174]
-
|
12.610017
150.03296
Normal

pair
.levels

<character>
<numeric>
chr1.1
a
4
chr1.2
y
19
chr1.3
s
12
chr1.4
u
24
chr1.5
q
3
chr1.6
y
9
---
seqlengths:
chr1
chr2
chr3
chrX
chrY

NA
NA
NA
NA
NA
> head(addSteppings(gr, group.name = "pair"))
GRanges with 6 ranges and 5 elementMetadata values:

seqnames
ranges
strand
|
value
score
group

<Rle>
<IRanges>
<Rle>
|
<numeric>
<numeric>
<character>
chr1.1
chr1 [160, 232]
-
|
12.994463
118.45194
Normal
chr1.2
chr1 [141, 213]
-
|
9.350873
92.11885
Normal
chr1.3
chr1 [  39, 113]
*
|
12.289738
65.92753
Tumor
chr1.4
chr1 [242, 314]
-
|
6.971489
102.75172
Normal
chr1.5
chr1 [  84, 158]
+
|
9.309577
133.85467
Tumor
chr1.6
chr1 [102, 174]
-
|
12.610017
150.03296
Normal

pair
.levels

<character>
<integer>
chr1.1
a
15
chr1.2
y
19
chr1.3
s
10
chr1.4
u
6
chr1.5
q
9
chr1.6
y
19
---
seqlengths:
chr1
chr2
chr3
chrX
chrY

NA
NA
NA
NA
NA
> gr.close <- GRanges(c("chr1", "chr1"), IRanges(c(10, 20),
+                                     width = 9))
> addSteppings(gr.close)
GRanges with 2 ranges and 1 elementMetadata value:

seqnames
ranges
strand
|
.levels

<Rle>
<IRanges>
<Rle>
|
<numeric>
chr1.1
chr1 [10, 18]
*
|
1
chr1.2
chr1 [20, 28]
*
|
1
---
seqlengths:
chr1

NA

> addSteppings(gr.close, extend.size = 5)
GRanges with 2 ranges and 1 elementMetadata value:

seqnames
ranges
strand
|
.levels

<Rle>
<IRanges>
<Rle>
|
<numeric>
chr1.1
chr1 [10, 18]
*
|
1
chr1.2
chr1 [20, 28]
*
|
2
---
seqlengths:
chr1

NA

>
> gr.temp <- GRanges("chr1", IRanges(start = c(100, 250),

+                                       end = c(200, 300)))
> maxGap(gaps(gr.temp, start = min(start(gr.temp))))
[1] 0.1225
> maxGap(gaps(gr.temp, start=min(start(gr.temp))), ratio = 0.5)
[1] 24.5

>
> gr1 <- GRanges("chr1", IRanges(start = c(100, 300, 600),
+                                      end = c(200, 400, 800)))
> shrink.fun1 <- shrinkageFun(gaps(gr1), max.gap =
+ maxGap(gaps(gr1), 0.15))
> shrink.fun2 <- shrinkageFun(gaps(gr1), max.gap = 0)
> head(shrink.fun1(gr1))
GRanges with 3 ranges and 0 elementMetadata values:

seqnames
ranges
strand

<Rle>
<IRanges>
<Rle>
[1]
chr1 [  91, 191]
*
[2]
chr1 [282, 382]
*
[3]
chr1 [473, 673]
*

---
seqlengths:
chr1

NA
> head(shrink.fun2(gr1))
GRanges with 3 ranges and 0 elementMetadata values:

seqnames
ranges
strand

<Rle>
<IRanges>
<Rle>
[1]
chr1 [    1, 101]
*
[2]
chr1 [102, 202]
*
[3]
chr1 [203, 403]
*
---
seqlengths:
chr1

NA
> gr2 <- GRanges("chr1", IRanges(start = c(100, 350, 550),

+                                     end = c(220, 500, 900)))
> gaps.gr <- intersect(gaps(gr1, start = min(start(gr1))),

+                        gaps(gr2, start = min(start(gr2))))
> shrink.fun <- shrinkageFun(gaps.gr, max.gap =
+                                                              maxGap(gaps.gr))
> head(shrink.fun(gr1))
GRanges with 3 ranges and 0 elementMetadata values:

seqnames
ranges
strand

<Rle>
<IRanges>
<Rle>
[1]
chr1 [100, 200]
*
[2]
chr1 [222, 322]
*
[3]
chr1 [474, 674]
*
---
seqlengths:
chr1

NA
> head(shrink.fun(gr2))
GRanges with 3 ranges and 0 elementMetadata values:

seqnames
ranges
strand

<Rle>
<IRanges>
<Rle>
[1]
chr1 [100, 220]
*
[2]
chr1 [272, 422]
*
[3]
chr1 [424, 774]
*
---
seqlengths:
chr1

NA
> data(hg19IdeogramCyto)
> head(hg19IdeogramCyto)
GRanges with 6 ranges and 2 elementMetadata values:

seqnames
ranges
strand
|
name
gieStain

<Rle>
<IRanges>
<Rle>
|
<factor>
<factor>
[1]
chr1 [                0, 2300000]
*
|
p36.33
gneg
[2]
chr1 [    2300000, 5400000]
*
|
p36.32
gpos25
[3]
chr1 [    5400000, 7200000]
*
|
p36.31
gneg
[4]
chr1 [    7200000, 9200000]
*
|
p36.23
gpos25
[5]
chr1 [  9200000, 12700000]
*
|
p36.22
gneg
[6]
chr1 [12700000, 16200000]
*
|
p36.21
gpos50
---
seqlengths:
chr1
chr2
chr3
chr4
chr5
chr6 ...
chr19
chr20
chr21
chr22
chrX
chrY

NA
NA
NA
NA
NA
NA ...
NA
NA
NA
NA
NA
NA
> data(hg19Ideogram)
> head(hg19Ideogram)
GRanges with 6 ranges and 0 elementMetadata values:

seqnames
ranges
strand

<Rle>
<IRanges>
<Rle>
[1]
chr1 [1, 249250621]
*
[2]
chr2 [1, 243199373]
*
[3]
chr3 [1, 198022430]
*
[4]
chr4 [1, 191154276]
*
[5]
chr5 [1, 180915260]
*
[6]
chr6 [1, 171115067]
*
---
seqlengths:

chr1
chr2 ...
chrY

249250621
243199373 ...
59373566
> isIdeogram(hg19IdeogramCyto)
[1] TRUE
> isIdeogram(hg19Ideogram)
[1] FALSE
> isSimpleIdeogram(hg19IdeogramCyto)
[1] FALSE
> isSimpleIdeogram(hg19Ideogram)
[1] TRUE
> data(genesymbol)
> head(genesymbol)
GRanges with 6 ranges and 2 elementMetadata values:

seqnames
ranges
strand
|
symbol
ensembl_id

<Rle>
<IRanges>
<Rle>
|
<character>
<character>
A1BG
chr19 [58858173, 58864865]
-
|
A1BG
ENSG00000121410
A2M
chr12 [  9220303,   9268558]
-
|
A2M
ENSG00000175899
NAT1
chr8 [18027970,  18081197]
+
|
NAT1
ENSG00000171428
NAT1
chr8 [18067617,  18081197]
+
|
NAT1
ENSG00000171428
NAT1
chr8 [18079176,  18081197]
+
|
NAT1
ENSG00000171428
NAT2
chr8 [18248754,  18258723]
+
|
NAT2
ENSG00000156006
---
seqlengths:

chr1
chr10 ...
chrY

NA
NA ...
NA
> genesymbol["RBM17"]
GRanges with 1 range and 2 elementMetadata values:

seqnames
ranges
strand
|
symbol
ensembl_id

<Rle>
<IRanges>
<Rle>
|
<character>
<character>
RBM17
chr10 [6130948, 6159420]
+
|
RBM17
ENSG00000134453
---
seqlengths:

chr1
chr10 ...
chrY

NA
NA ...
NA
> sessionInfo()
R version 2.14.2 (2012-02-29)

Platform: i386-pc-mingw32/i386 (32-bit)
locale:

[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:

[1]
grid
stats
graphics
grDevices
utils
datasets
methods
[8]
base
other attached packages:

[1]
GenomicRanges_1.6.7
IRanges_1.12.6
dichromat_1.2-4
[4]
biovizBase_1.0.4
graph_1.32.0
Biobase_2.14.0
[7]
BiocInstaller_1.2.1
loaded via a namespace (and not attached):

[1]
Biostrings_2.22.0
colorspace_1.1-1
labeling_0.1
munsell_0.3
[5]
plyr_1.7.1
RColorBrewer_1.0-5
scales_0.2.1
stringr_0.6.1
[9]
tools_2.14.2
>
Simultaneous Biomolecular Reactions and Mass Transfer

In epidemiologic investigations, occurrences of simultaneous biomolecular reactions and mass transfer are common in many biomedical environments. Some typical examples are:
(1)
Intestinal drug absorption involving bio-transporters and metabolic reactions with enzymes[21]: the absorption of drugs via the oral route is a subject of on-going and serious investigations in the pharmaceutical industry since good bio-availability implies that the drug is able to reach the systemic circulation via the oral path. Oral absorption depends on both the drug properties and the physiology of the gastrointestinal tract, or patient properties, including drug dissolution, drug interaction with the aqueous environment and membrane, permeation across membrane, and irreversible removal by organs such as the liver, intestines, and the lung.
(2)
Oxygen Transport via Metal Complexes[22]: On the average, an adult at rest consumes 250 ml of pure oxygen per minute to provide energy for all the tissues and organs of the body, even when the body is at rest. During strenuous activities, such as exercising, the oxygen needs increase dramatically. The oxygen is transported in the blood from the lungs to the tissues where it is consumed. However, only about 1.5% of the oxygen transported in the blood is dissolved directly in the blood plasma. Transporting the large amount of oxygen required by the body, and allowing it to leave the blood when it reaches the tissues that demand the most oxygen, require a more sophisticated mechanism than simply dissolving the gas in the blood. To meet this challenge, the body is equipped with a finely- tuned transport system that centers on the metal complex heme. The metal ions bind and then release ligands in some processes, and to oxidize and reduce in other processes, making them ideal for use in biological systems. The most common metal used in the body is iron, and it plays a central role in almost all living cells. For example, iron complexes are used in the transport of oxygen in the blood and tissues. Metal-ion complexes consist of a metal ion that is bonded via "coordinate- covalent bonds" to a small number of anions or neutral molecules called ligands. For example the ammonia (NH3) ligand is a monodentate ligand; i.e., each monodentate ligand in a metal-ion complex possesses a single electron-pair-donor atom and occupies only one site in the coordination sphere of a metal ion. Some ligands have two or more electron-pair-donor atoms that can simultaneously coordinate to a metal ion and occupy two or more coordination sites; these ligands are called polydentate ligands. They are also known as chelating (Greek word for "claw") agents, because they appear to grasp the metal ion between two or more electron-pair-donor atoms. The coordination number for a metal refers to the total number of occupied coordination sites around the central metal ion (i.e., the total number of metal-ligand bonds in the complex). This process is another important example of biomolecular reaction and transport.
(3)
Carotenoid Transport in the Lipid Transporters SR-BI, NPC1L1, and ABCA1[23]: The intestinal absorption of carotenoids in vivo involves several crucial steps:
1)
release from the food matrix in the lumen,
2)
solubilization into mixed micelles,
3)
uptake by intestinal mucosal cells,
4)
incorporation into chylomicrons, and
5)
secretion into the lymph.
Research has shown that:
A)
EZ is an inhibitor of the intestinal absorption of carotenoids, an effect that decreased with increasing polarity of the carotenoid molecule;
B)
SR-BI is involved in intestinal carotenoid transport; and
C)
EZ acts not only by interacting physically with cholesterol transporters as previously suggested, but also by downregulating the gene expression of 3 proteins involved in cholesterol transport in the enterocyte, the transporters SR-BI, NPC1L1, and ABCA1.
The intestinal transport of carotenoid is thus a facilitated process resembling that of cholesterol; therefore, carotenoid transport in intestinal cells may also involve more than one transporter.
Hence, the study of biomolecular reaction and transport is an area of importance in biomedical processes and their occurrences in epidemiologic investigations. In this section, one applies the facilities available in the R environment to solve problems arisen from these processes. This study is being approached from two directions:
 SHAPE  \* MERGEFORMAT 



Using the R environment as a support to numerical analytical schemes that may be developed to solve this class of problems.
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Applying the R functions in the CRAN package ReacTran.[24]
Theory of Simultaneous Biomolecular Reactions and Mass Transfer in Two Dimensions:
Part I:
Numerical Solutions of a Model in Terms of Simultaneous Semi-Linear Parabolic Differential Equations
Part 2:
A Uniqueness Theorem of the Governing Simultaneous Semi-Linear Parabolic Partial Differential Equations
(To facilitate referencing, some of the Reaction-Transport modeling equations in this section is pre-designated by RT-.)
Part I: Numerical Solutions of a Model in Terms of Simultaneous Semi-Linear Parabolic Differential Equations
In formulating a mathematical model representing a typical biomolecular reaction and transport such as the three examples cited, consider two principal reactants A and B being brought into contact with a medium for reaction. There are physically interesting situations in which substances A and B are both gases that are brought into contact with a liquid in which both are soluble and within which they react with each other. Such theoretical and experimental results have been reported by Roper et al.[32]
This analysis presents useful and efficient numerical methods for solving the systems equations arising from such situations in which A and B are brought into contact with a laminar layer of liquid in which they react by a general (n1 + n2)-order biochemical mechanism. Some aspects of the nature of the mathematics of these equations will be discussed as their solutions are sought. Some numerical results are obtained and are presented.
The R environment will be used to present the theoretical results graphically.
A Mathematical Model for Simultaneous Biochemical Reaction and Mass Transport of Two Species in a Medium
The reaction is assumed to have the stoichiometry corresponding to the irreversible biochemical equation
A + υB → Products
Let y and z be two mutually perpendicular axes in space.
Consider a material balance on a differential element having dimensions dy x dz in the direction perpendicular to the interface and the direction of flow parallel to the interface.
Let A = A(y, z), and B = B(y, z) be the concentrations of biochemical species A and B at the point (y, z).
Let the absorbing medium flow with velocity u in the direction of positive z-axis, with diffusion occurring in the direction of positive y-axis.
Consider the mass balance of A and B over a volume element dV = (dy)(dz)(1), with A and B reacting in the medium phase after absorption, according to the irreversible biochemical mechanism indicated, viz., A + υB → Products.
Now for species A:
Net Rate of Diffusion = Net Rate of Accumulation + Net Rate of Reaction
viz.,
[(Rate of Diffusion into dV) – (Rate of Diffusion out of dV)] 
= [(Rate of flow into dV) – (Rate of Flow out of dV)] 
+ [Rate of Biochemical Reaction]

Hence,
[–(dz.1)DA (∂A/∂y)] – [– (dz.1) DA {(∂A/∂y) + (∂2A/∂y2) dy}] 
= [(dy.1) u A} – {(dy.1) u (A + (∂A/∂z) dz)} 
+ kAn1Bn2 (dy . dz .1)
which results in Equation (RT-1A).
For species B, a similar mass balance results in Equation (RT-1B).

DA ∂2A/∂y2 = u ∂A/∂z + k An1 Bn2
(RT-1A)

DB ∂2B/∂y2 = u ∂B/∂z + υ k An1 Bn2
(RT-1B)
with the following boundary conditions on A(y, z) and B(y, z):

A(0, z) = Ai, B(0, z) = Bi
}

A(y, 0) = 0, B(y, 0) = 0
}
(RT-1C)

A(y, z) and B(y, z) are bounded as y and z tend to infinity.
}
The three terms in each of the above pair of equations, (RT-1A) and (RT-1B), represent the diffusion, convection, and reaction terms, respectively.
Transformation of the Mathematical Model into Condensed and Dimensionless Forms
For the simple case of reaction for a second-order biochemical mechanism:
n1 = 1 = n2.
Let

a = A/Ai, b = B/Bi
}

x = (kBi/DA)½ y, t = (kBi/u) z
}
(RT-2)
then Equations (RT-1A) and (RT-1B) become

∂2a/∂x2 = ∂a/∂t + ab
(RT-3A)

R ∂2b/∂x2 = ∂b/∂t + m ab
(RT-3B)
with the boundary conditions on a(x, t) and b(x, t) given by:

a(0, t) = 1 = b(0, t)
}

a(x, 0) = 0 = b(x, 0)
}
(RT-3C)


a(x, z) and b(x, t) are bounded as x, t → ∞
}
and the following dimensionless parameters:

R = DB/DA, m = υ Ai/Bi
(RT-4)
In general, the model system Equations (1A–C) may be transformed into a condensed form by the following substitution of new variables,
Let the variables A, B, y, and z be represented by the following condensed variables
a = A/Aip
b = B/Bip
x = (k Air Bis / DA)½ y
t = (k Air Bis / u)½ z

respectively, where p, q, r, and s are exponents to be determined.
Substituting these new condensed variables into Equations (RT-1A) and (RT-1B), the results is:
(k Aip+r Bis) ∂2a/∂x2 = (k Aip+r Bis) ∂a/∂t + (kAipn1 Biqn2) an1bn2
(k Air Biq+s) R ∂2b/∂x2 = (k Air Biq+s) ∂b/∂t + (kAipn1-1 Biqn2+1) m an1bn2
Now, let

a = A/Ai, b = B/Bi
}

x = (kAin1–1 Bin2/DA)½ y, t = (kAin1-1 Bin2/u) z
}
(RT-5)
resulting in

∂2a/∂x2 = ∂a/∂t + an1 bn2
(RT-6A)

R ∂2b/∂x2 = ∂b/∂t + m an1 bn2
(RT-6B)
together with boundary conditions given by Equation (RT-3C) and dimensionless parameters given by Equation (RT-4) as before.
In fact, the condensed equations, Equations (RT-6A) and (RT-6B), are obtained if the respective exponents of Ai and Bi are equated, viz.,
p+r = pn1,  s = qn2, r = pn1 – 1, q + s = qn2 + 1
Choosing p = 1 = q, one obtains: r = n1 – 1, and s = n2 . This choice of p and q makes the condensed variables a and b dimensionless, and the boundary condition Equation (RT-1C) is reduced to Equation (RT-3C).
Hence the new condensed variables are defined by Equation (RT-2).
Solutions of the System Equations
For somewhat different boundary conditions, Roper et al.[32] obtained some approximate solutions using the method of moments in which concentration profiles for A and B were assumed to be similar cubic polynomials. The approximate solutions were forced to satisfy the boundary conditions exactly but to satisfy the differential equations only on the average. Empirical factors were used to adjust the solutions to known asymptotic solutions, with a reported error of about 3%. Since the boundary conditions appear to be incorrect, as shown at the end of this section, it seems that any success of their work may be fortuitous. However, a versatile scheme may be developed to solve the system of equations. The remainder of this section will discuss this scheme.
Numerical Schemes
Several finite difference discretization schemes are used to solve the equation system (RT-1A) -(RT-1C):
(a)
Fully-explicit scheme
(b)
Semi-explicit scheme
(c)
Semi-implicit schemes, for which the following variations are possible for solving the corresponding system of linear equations:
(i)
Calculating the inverse
(ii)
For triangular systems, solution by elimination

(iii)
Choleski’s method, with and without iterations
(d)
Fully-implicit scheme
(e)
Crank-Nicholson method.
(a) Fully-explicit Scheme
Equations (RT-3A) and (RT-3B) may be re-written as

∂a/∂t = ∂2a/∂x2 – ab
(RT-7A)

∂b/∂t = R ∂2b/∂x2 – m ab
(RT-7B)
Let a ~ A, and b ~ B, also Aij = a(xi, tj) and Bij = b(xi,tj),
Then the boundary conditions, Equation (3C) become

a(0, t) = A1j = 1 = B1j = b(0, t)
}

a(x, 0) = Ai1 = 0 = Bi1 = b(x, 0)
}
(RT-7C)

a(x, t) and b(x, t) are bounded as x, t → ∞
}
The corresponding finite difference equations, discretizing Equations (RT-7A) and (RT-7B), are, respectively:

(Aij+1 – Aij)/Δt = (Ai-1 j – 2Aij + Ai+1j)/(Δx)2 – Aij Bi j
(RT-8A)

(Bij+1 – Bij)/Δt = R (Bi-1 j – 2Bij + Bi+1j)/(Δx)2 – m Aij Bi j
(RT-8B)
with the restriction that Δt/(Δx)2 ≤ ½ .
Equations (RT-8A) and (RT-8B) may now be solved explicitly for Aij+1 and Bij+1 to yield:

Aij+1 = [1 – 2 Δt/(Δx)2 – Δt Bi j]Aij + [Δt/(Δx)2](Ai+1j + Ai-1j)
(RT-9A)

Bij+1 = [1 – 2 RΔt/(Δx)2 – mΔt Ai j]Bij + [RΔt/(Δx)2](Bi+1j + Bi-1j)
(RT-9B)
which may be used for direct computation of Aij+1 and Bij+1, given Anj and Bnj, for n = i-1, i, i+1.
This algorithm is programmed for computer calculation, and convergent results are obtained.
(b) Semi-explicit Scheme
In this scheme, the finite difference equations, discretizing Equations (RT-7A) and (RT-7B), are:

(Aij+1 – Aij)/Δt = (Ai-1j – 2Aij + Ai+1j)/(Δx)2 – Aij+1 Bij
(RT-10A)

(Bij+1 – Bij)/Δt = R (Bi-1j – 2Bij + Bi+1j)/(Δx)2 – m Aij+1 Bij+1
(RT-10B)
Solving for Aij+1 from Equation (RT-10A), then Bij+1 from Equation (RT-10B), one obtains

Aij+1 = [{Δt/(Δx)2}(Ai-1j – 2Aj + Ai+1j) + Aij]/[1 + Δt Bij]
(RT-11A)

Bij+1 = [{RΔt/(Δx)2}(Bi-1j – 2Bij + Bi+1j) + Bij]/[1 + mΔt Aij]
(RT-11B)
For this procedure, it is seen that Aij+1 must first be evaluated, and then Bij+1 is obtained. The rest of the computation may proceed as in the fully-explicit case. This algorithm is programmed for computer calculation, and convergent results are obtained.
(c) Semi-implicit Scheme
In this scheme, the finite difference equations, discretizing Equations (RT-7A) and (RT-7B), are:

(Aij+1 – Aij)/Δt = (Ai-1j+1 – 2Aij+1 + Ai+1j+1)/(Δx)2 – Aij+1 Bij
(RT-12A)

(Bij+1 – Bij)/Δt = R(Bi-1j+1 – 2Bij+1 + Bi+1j+1)/(Δx)2 – mAij+1 Bij+1
(RT-12B)
Equations (RT-12A) and (RT-12B) may be re-written in matrix form:

C A j+1 = Aj
(RT-13A)

D B j+1 = Bj
(RT-13B)
where C is a tri-diagonal matrix given by
          C  =  [ I  –  {Δt/(Δx)2} A  + Δt B  j ]

                =  [c1    u1  0   0   0   0   0   …    0  0 ]

                    [u1   c2  u2   0   0   0   0   …    0  0 ]

                    [ 0   u2  c3  u3   0   0   0   …    0  0 ]

                    [ 0   0   u3  c4  u4   0   0   0  …0  0 ]

                    [ ................................................. ]

                    [ 0    0    0    -     -     -   -   -      0  ]

                    [ 0    0    0    -     -     -   0   cn-1  un-]

                    [ 0    0    0    -     -     -    0   un-1  cn]

with ci = 1 - 2 Δt/(Δx)2 + Δt Bi j,
and ui = - Δt/(Δx)2 .
A is a tri-diagonal matrix given by
      C      =    [-2    +1    0    0    0   0   0  0  0]

                    [+1   -2  +1    0   0   0   0   0  0]

                    [  0   +1  -2  +1   0   0   0   0  0]

                    [ 0   0   +1  -2  +1    0   0   0  0]

                    [............................................... ]

                    [ 0    0    0    -     -    +1  -2  +1]

                    [ 0    0    0    -     -     -    +1  -2 ]

B j is a diagonal matrix given by
        B  j  =  [B1j     0    0    0    0   0   0   0  0 ]

                    [ 0    B2j    0     0   0   0   0   0  0]

                    [  0    0   B3j   0   0   0   0   0   0 ]

                    [ 0     0   0    B4j   0  0   0    0  0 ]

                    [ ............................................... ]

                    [ 0    0    0     0    0    0   0     Bnj ]

D is a tri-diagonal matrix given by
          D    = [ I  -  R{Δt/(Δx)2} A  + m Δt A  j ]

                 = [d1    v1  0    0    0   0   0   …   0   0]

                    [v1   d2  v2   0   0   0   0   …    0   0 ]

                    [ 0    v2  d3  v3   0   0   0   …    0   0]

                    [ 0   0   v3  d4  v4   0   0   0   …0   0]

                    [ .................................................. ]

                    [ 0    0    0    -     -     -   -   -        0 ]

                    [ 0    0    0    -     -     -   .0   dn-1  vn-1]

                    [ 0    0    0    -     -     -   . 0   vn-1     dn]

with di = 1 - R 2Δt/(Δx)2 + mΔt Ai j+1, and vi = - R Δt/(Δx)2 .
A j+1 is the diagonal matrix given by
     A   j+1  =  [A1j+1  0      0     0     0    0   0   0   0    ]

                    [0     A2j+1  0     0     0    0   0   0   0    ]

                    [0      0     A3j+1 0     0    0   0    0   0   ]

                    [ 0     0      0    A4j+1 0   0    0    0   0   ]

                    [ ........................................................ ]

                    [ 0     0     0     0     0   0    0    0  Anj+1 ]

The coupled matrix equations, Equations (RT-13A) and (RT-13B), may be solved numerically by several procedures, including:
(i)
Calculating the inverse
C A j+1 = Aj => A j+1 = C -1A j
D B j+1 = Bj => B j+1 = D -1B j
This method is generally not used owing to computational inefficiency and large data storage requirements [26].
(ii)
For triangular systems, solution by elimination[24] –
This algorithm is programmed for computer calculation using one subroutine, and convergent results are obtained. In order to properly include the boundary condition of a(0, 1) = 1 = b(0, t), one may set 
A0j+1 = 1 = B0j+1
so that, for calculations, Equations (RT-13A) and (RT-13B) become:
[ [1+{2 Δt/(Δx)2}+ Δt B1j]  -Δt/(Δx)2     0   0    0........... ][A1j+1] = [{Δt/(Δx)2}A0j+1+A1j]

[-Δt/(Δx)2  [1+{2 Δt/(Δx)2}+ Δt B2j]  -Δt/(Δx)2    0  ......][A2j+1] = [                          A2j]

[     0  -Δt/(Δx)2   [1+{2 Δt/(Δx)2}+ Δt B3j] -Δt/(Δx)2  0][A3j+1] = [                          A3j]

[      0        0        .....................................................,....][........] = [                        ......]

[      0         0            -Δt/(Δx)2  [1+{2 Δt/(Δx)2}+ Δt Bnj][Anj+1] = [                         Anj]

(RT-14A)

and
[ [1+{R 2 Δt/(Δx)2}+mΔt A1j] -Δt/(Δx)2     0 0 0.......... ][B1j+1] =[{RΔt/(Δx)2}B0j+1+B1j]

[-Δt/(Δx)2 [1+{R 2Δt/(Δx)2}+ mΔt A2j] -Δt/(Δx)2  0  ..][B2j+1] =[                            B2j]

[   0  -Δt/(Δx)2[1+{R2Δt/(Δx)2}+mΔt A3j] -Δt/(Δx)2 0][B3j+1]= [                            B3j]

[   0           0                         .........................................][.......]= [                            ....]

[   0           0   -Δt/(Δx)2  [1+{R 2 Δt/(Δx)2}+ mΔt Anj ][Bnj+1] = [                             Bnj]

(RT-14B)

 (iii)
Computation using Choleski’s Method –
Since the matrices C and D, in Equations (RT-13A) and (RT-13B) respectively, are each symmetric and positive definite, one can write

C = L LT
(RT-15A)
where L is a lower triangular matrix. Now
                                                       C   Aj+1  =  Aj
                                        =>     (L LT) Aj+1  =  Aj
                                        =>     L ( LT Aj+1) =  Aj
                                        =>              L ( g) =  Aj ,    where  LT Aj+1 = g
and                L                                LT                          =                     C                                                                   
=> [(1  0  0  0..............][(1  (1  0  0...................] = [c1  u1  0  0  0.........]

     [ (1  (2  0  0  0.........][ 0  (2  (2  0   0.............]    [u1  c2  u2  0  0.......]

     [ 0  (2  (3  0  0  0.....][ 0  0   (3  (3   0  0  0.....]     [0   u2  c3  u3  0  0..]

     [ 0  0........................][ 0  0.............................]     [0   0    0   0...........]                  

     [  0  0….0  0  ( n-1  (n] [  0  0  0.......0  0  0  (n]     [0   0    0   0…un-1 cn]

=>   (1  =  √c1
        (i  =  √(ci  -  (i-12),   i = 2, 3, 4, …, n

        (i  =   ui/(i ,             i = 1, 2, 3, …, n - 1
which forms the algorithm for L and LT, the subroutine for which is denoted by CHOL. Also,
                                           L                   g      =        Aj                                                                 
                    => [(1  0  0  0................0] [g1]  =   [(1]

                          [(1  (2  0  0  0..........0] [g2]        [(2]

                          [ 0  (2  (3  0  0  0.....0] [g3]        [(3]     

                          [ 0  0........................0] [....]       [...]                  

                          [ 0  0  0…...0   (n-1  (n]  [gn ]       [(n ]

=>  g1  =  (1 / (1
gi  =  ((i – (-1gi-1)/(i,   i = 2, 3, 4, …, n

which forms the algorithm for g, the subroutine for which is named SOLV.
Further                                  LT                              A j+1    =     g

                       =>  [(1  (1  0  0               0]  [(1]   =      [g1]

                              [ 0  (2  (2  0   0..........0] [(2]           [g2]

                              [ 0  0   (3  (3   0  0  0..0]  [(3]           [g3]

                              [ 0  0...........................0] [...]           [...]

                                              [ 0  0  0.........0  0  0  (n]  [(n]           [gn]

                       =>  ((n  =  gn / (n
                              ((i  =  (gi – (i((i+1)/(i,   i = n - 1,… ,3, 2, 1
which forms the algorithm for Aj+1, and is computed using the subroutine SOLV.
Similarly,
D = M MT
(RT-15B)
and
D Bj+1 = Bj => (M MT) Bj+1 = Bj
=> M (MT Bj+1) = Bj
=>             M h = Bj,
where MTB j+1 = h, in which M is a lower-triangular matrix given by
                     M                                  MT               =               D
=> [a1  0  0  0…………..][a1  b1  0  0………….] = [d1  v1  0  0  0…….....]

     [ b1  a2  0  0  0……….][ 0  a2  b2  0   0……...]    [v1  d2  v2  0  0….......]

     [ 0  b2  a3  0  0  0….....][ 0  0   a3  b3   0  0  0...]    [0   v2  d3  v3  0  0......]

     [ 0  0………………...][ 0  0……….…….….]    [0   0    0   0…….......]

     [  0  0….0  0    bn-1  an] [  0  0  0…..0  0  0  an]     [0   0    0   0....vn-1 dn]

=>   a1  =  √d1
ai = √(di – bi-12), i = 2, 3, 4, . . ., n
bi = vi/ai, i = 1, 2, 3, . . ., n – 1
which may be computed again by the subroutine CHOL . Again,
                                           M                   h      =      Bj
                     => [a1  0  0  0…………0] [h1]  =   [w1]

                          [ b1  a2  0  0  0……...0] [h2]       [w2]

                          [ 0   b2  a3  0  0  0…...0] [h3]      [w3]

                          [ 0  0……………..…0] [...]       [....] 

                          [ 0  0  0…....0   bn-1  an]  [hn]       [wn ]

                     =>  h1  =  w1 / a1
                            hi  =  (wi – bi-1hi-1)/ai,   i = 1, 2, 3, …, n

which again may be computed by the forms the subroutine SOLV.
Finally,                                 MT                              B j+1   =     h
                       =>  [a1  b1  0  0……….…0]  [ s1]   =  [h1]

                              [ 0  a2  b2  0   0……...0]  [s2 ]        [h2]

                              [ 0  0   a3  b3   0  0  0...0]  [ s3]        [h3]

                              [ 0  0……….……….0]  […]        […]

                                            [  0  0  0……0  0  0  an]  [ sn ]       [hn ]

                      =>  sn  =  hn / an
                            si  =  (hi – bisi+1)/ai,   i = n-1,… ,3, 2, 1
which again may be computed using the subroutine SOLV.
Thus, this scheme consists of the following algorithm:
                             CHOL                     CHOL

               Aj, Bj  =======>        Aj+1            =======>   Bj+1            
                            SOLV                      SOLV

                             CHOL                     CHOL

                          =======>        Aj+2            =======>   Bj+2   ,   etc.       

                             SOLV                     SOLV

This procedure is programmed for computer calculations, using these two subroutines, and results are obtained. As in the calculation for (ii), viz., solution by elimination for tri-diagonal systems, two vectors Aj and Bj were modified so as to properly include the boundary conditions: a(0, t) = 1 = b(0, t).
(d) Fully-implicit Scheme
In this scheme, the finite difference equations, discretizing Equations (RT-7A) and (RT-7B), are:

(Aij+1 – Aij)/Δt = (Ai-1 j+1 – 2Aij+1 + Ai+1j+1)/(Δx)2 – Aij+1 Bij+1
(RT-16A)

(Bij+1 – Bij)/Δt = R(Bi-1 j+1 – 2Bij+1 + Bi+1j+1)/(Δx)2 – mAij+1 Bi j+1
(RT-16B)
which may be written in matrix form as:

[I – Δt/(Δx)2A ]A j+1 = Aj – Δt B j+1 Aj+1
(RT-17A)

[I – R Δt/(Δx)2A ]B j+1 = Bj – m Δt B j+1 B j+1
(RT-17B)
where
                     A    =  [-2  +1                0         ]

                                [+1  -2  +1          0         ]

                                [     +1  -2  +1     0         ]

                                [ …………………….....]

                                [       0                  +1  -2]

                          A  j+ 1  =  [A1 j+1                  0          ]

                                [      A2 j+1            0          ]

                                [            A3 j+1      0          ]

                                [ ……………………......]

                                [       0                     An j+1]

and          B  j+ 1  =  [B1 j+1                  0          ]

                                [      B2 j+1            0          ]

                                [            B3 j+1      0          ]

                                [ ……………………......]

                                [       0                   Bn j+1  ]

As before, to incorporate the boundary conditions: a(0, t) = 1 = b(0, t), the matrices for these schemes become
[ [1+{2 Δt/(Δx)2}               -Δt/(Δx)2              0                                          ][A1j+1] = [{Δt/(Δx)2}1  +A1j  - Δt B1j+1A1 j+1]

[-Δt/(Δx)2         [1+{2 Δt/(Δx)2}         -Δt/(Δx)2                              0                      ][A2j+1]    [                         A2j  - Δt B2j+1A2 j+1]    

[     0                     -Δt/(Δx)2         [1+{2 Δt/(Δx)2}]          -Δt/(Δx)2      0][A3j+1]    [                         A3j  - Δt B3j+1A3 j+1]

[     0                          0               …………. ………………………      ][…..]    [                       .………………….]

[     0                          0                                -Δt/(Δx)2    [1+{2 Δt/(Δx)2][Anj+1]    [                          Anj - Δt Bnj+1An j+1]

(RT-18A)

and

[ [1+ R{2 Δt/(Δx)2}      -RΔt/(Δx)2                     0                                          ][B1j+1] = [R{Δt/(Δx)2}1 + B1j - m Δt A1j+1B1j+1 ]

[-RΔt/(Δx)2       [1+R{2 Δt/(Δx)2}      -RΔt/(Δx)2                              0                      ][B2j+1]    [                         B2j - m Δt A2j+1B2 j+1]
[     0                    -RΔt/(Δx)2       [1+R{2 Δt/(Δx)2}]       -RΔt/(Δx)2       0][B3j+1]    [                         B3j - m Δt A3j+1B3j+1  ]

[     0                            0             …………………………………… …][…...]    [                       .……..…………..….]

[     0                            0                          -RΔt/(Δx)2     [1+R{2 Δt/(Δx)2][Bnj+1]    [                         Bnj – m Δt Anj+1Bnj+1]

(RT-18B)

Clearly, the implicit relations between Aij+1 and Aij, and between Bij+1 and Bij, mean that an iterative scheme is to be used. The symmetric tri-diagonal matrices on the left-hand-side of Equations (RT-18A) and (RT-18B) can be readily obtained and factored by the subroutine CHOL. Since it is independent of Aij and Bij, this part of the calculation need to be done only once per increment in time or space. Given the vector Aij, the next incremental vector Aij+1 is obtained by iteration, using Equation (RT-18A) and SOLV, to a pre-determined accuracy. Similarly Bij+1 can be obtained from Bij, using Equation (RT-18B). This algorithm is programmed for computer calculations, and results are obtained.
(e) Crank-Nicholson Semi-implicit Scheme
In this scheme, the finite difference equations, discretizing Equations (RT-7A) and (RT-7B), are:
     (Aij+1  -  Aij)/Δt  

=   ½ [(Ai-1j+1 – 2Aij+1 + Ai+1j+1)/(Δx)2  + (Ai-1j – 2Aij + Ai+1j)/(Δx)2]  

                           -  ½ (Aij+1 Bij+1  + Aij Bij) 
(RT-19A)
     (Bij+1 - Bij)/Δt  

=   ½ R [(Bi-1j+1 – 2Bij+1 + Bi+1j+1)/(Δx)2  + (Bi-1j – 2Bij + Bi+1j)/(Δx)2]  

                            -  ½ m (Aij+1 Bij+1  + Aij Bij) 
(RT-19B)
which, in matrix form, are

C1 Aj+1 = C2 Aj
(RT-20A)

D1 Bj+1 = D2 Bj
(RT-20B)

where
C1 = [ I – ½{Δt/(Δx)2}A + ½ Δt B j+1]
C2 = [ I + ½{Δt/(Δx)2}A + ½ Δt B j ]
D1 = [ I – ½{Δt/(Δx)2}A + ½ m Δt A j+1]
D2 = [ I – ½{Δt/(Δx)2}A + ½ m Δt A j ]

with
                    A     j  =  [A1j                   0        ]

                                [       A2j             0         ]

                                [            A3j        0         ]

                                [ ……………………....]

                                [       0                      Anj]

                    B    j   =[B1 j                   0         ]

                                [      B2 j             0          ]

                                [            B3j        0          ]

                                [ …………………….....]

                                [       0                       Bnj]

and A j, A j+1, and B j+1 are defined as before. Clearly, this required an iterative scheme.
Again, to incorporate the boundary conditions: a(0, t) = 1 = b(0, t), one may first re-write Equations (RT-20A) and (RT-20B) as follows:
[ I - ½{Δt/(Δx)2}A     ] Aj+1  

         =  [I + ½{Δt/(Δx)2} - ½ Δt B j]Aj  -  ½ Δt B j+1 Aj+1
(RT-21A)

[ I - ½R{Δt/(Δx)2}A    ] Bj+1 

         = [I - ½R{Δt/(Δx)2} - ½ m Δt A  j]Bj   - ½ mΔtA  j+1Bj+1
(RT-21B)
Upon inclusion of the boundary conditions, these matrix equations become
[ a   m     0   0   0  0…0 ][A1j+1]  

[m    a   m    0   0  0… 0][A2j+1] 

[ 0   m     a    m  0…..0][A3j+1] 

[ ……………………..][ …..]

[ 0   0   0   0….... m.  a][Anj+1]  

= [{Δt/(Δx)2] + [ p1   n     0   0   0  0…0 ][A1j]  -  ½Δt [B1j+1  0     0      0……0] [A1j+1]

   [       0       ]    [n    p2   n    0    0  0… 0][A2j]             [  0     B2j+1 0      0……0] [A2j+1] 

   [       0       ]    [ 0   n    p3  n  0  0…..0][A3j]            [  0      0     B3j+1 0……0] [A3j+1]

   [     ------   ]    [ ……………………..][….]            […………………….…][……]

   [       0       ]    [ 0   0   0   0….... n   pn][Anj]            [ 0      0      0 …  0   Bnj+1][Anj+1]

(RT-22A)

where a = 1 + {Δt/(Δx)2}
m = - (½){Δt/(Δx)2
pi = 1 - {Δt/(Δx)2} - (½) Δt Bij
n = (½){Δt/(Δx)2
and

[ c   r     0   0   0  0…0 ][B1j+1]  

[r    c   r     0     0  0… 0][B2j+1] 

[0    r   c   r    0….....0][B3j+1] 

[ …………………….][…...]

[ 0   0   0   0….... r    c][Bnj+1]  

= [R{Δt/(Δx)2] + [ q1   s      0   0   0  0…0][B1j] - ½mΔt [A1j+1  0    0     0…….0][B1j+1]

   [         0       ]    [s     q2   s    0    0  0… 0][B2j]              [0   A2j+1     0     0….…0][B2j+1]     

   [         0       ]    [ 0   s    q3  s  0  0…..0][B3j]                [0      0   A3j+1  0…. ..0][B3j+1]

   [       ------   ]    [ …………………….][….]                 [………………....…..][…..]

   [         0       ]    [ 0   0   0   0….... s  qn][Bnj]                  [0    0     0 ..… 0 Anj+1][Bnj+1]

(RT-22B)

where c = 1 + R{Δt/(Δx)2}
r = - (½)R{Δt/(Δx)2
qi = 1 - R{Δt/(Δx)2} - (½) m Δt Aij
s = (½)R{Δt/(Δx)2
It is easily seen that the implicit relations between Aij+1 and Aij, and between Bij+1 and Bij, require the use of an iterative procedure. This procedure for computation is the same as that for the fully-implicit scheme, viz., using Choleski’s Method. This algorithm is programmed for machine computation, and results are obtained.
Biomedical and Biopharmaceutical Applications
An important application of this study is the effects of biochemical reactions on the rate of transport into the media, e.g., the enhancement of rates of mass transport with biochemical reactions over the rate of physical mass transport. A typical measure of these absorption rates may be expressed in terms of the transport coefficients, defined as the rates of transport of dissolved reactants per unit of interfacial area.
For physical mass transport, this mass transfer coefficient is

for Reactant A:
kLA = -√(kBiDA)
(RT-23A)

for Reactant B:
kLB = -√(kBiDB)
(RT-23B)
The mass transfer coefficient, in general, will be different for A and for B – each dependent on the reaction rates between the reaction substances:

kLA(t) = -(DA/Ai)(∂A/∂z)z=0 = -√(kBiDA)(∂a/∂x)x=0
(RT-24A)

kLB(t) = -(DB/Bi)(∂B/∂z)z=0 = -√(kBiDA)R(∂b/∂x)x=0
(RT-24B)
After Equations (RT-7A) and (RT-7B) have been solved, subject to the boundary conditions in Equation (RT-7C), then the derivatives required in Equations (RT-24A) and (RT-24B) may be determined.
The Mass Transport Rate Enhancement Factor FE, may be expressed as the ratio:
Mass Transfer Coefficient for Mass Transport with Biochemical Reaction
Mass Transfer Coefficient for Physical Mass Transport only
Thus, for Reactant A:

FEA = kLA/kLA(t)|mean = (1/T)ʃ0T (∂a/∂x)x=0 dT
(RT-25A)
where kLA(t)|mean = time-mean mass transfer coefficient for Mass Transport with biochemical reaction, for Reactant Component A
= -√(kBiDA) [{ʃ0T (∂a/∂x)x=0 dT}/T]
Similarly, for Reactant B:
kLB(t)|mean = -√(kBiDB) [{ʃ0T (∂b/∂x)x=0 dT}/T]
and
FEB = kLB/kLB(t)|mean = (1/T)ʃ0T (∂b/∂x)x=0 dT
(RT-25B)
From the results of the numerical solutions of Equations (RT-7A) and (RT-7B), the gradients at x = 0 may be obtained, and using Equations (RT-25A) and (RT-25B), the Enhancement Factors (owing to biochemical reaction) of the mass transport rates may be evaluated for each reactant component.
Some Numerical Results
(a)
The Steady State Solution[25]
The steady state solution may be used for comparison:
a = b = 1/(1 + x√6)2
(b)
Fully-implicit Scheme
For R = 1, and m = 1, using the Choleski method, with iterations and double precision calculations, numerical results for two cases have been obtained, see Appendix A (in which an outline of the FORTRAN computer code is shown, together with some pertinent outputs of the calculated results) :
Case I:
NX (number of Distance steps) = 15
NT (number of Time steps) = 100
Case II:
NX (number of Distance steps) = 20
NT (number of Time steps) = 100
The convergence to within an error less than ½ x 10-4 unit.
Previously observed instabilities no longer appeared, even for large time steps:
Δt/Δx = 3/20 to 1/5, and
Δt/(Δx)2 = 9/40 to 2/5
Results, truncated to four significant digits, are obtained, listed below, and presented graphically using the open-source R program, showing the time-dependent penetration of the mass transport under a second-order irreversible process: Figure 36 through Figure 39.
Case I: R = 1, m = 1, X = 10, NX = 15, T = 10, NT = 100
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Figure 36 Using R to provide graphical output for the fully implicit scheme, Case I, Component A: progressive concentration profiles of Component A in the liquid phase showing time-dependent penetration for t = 0, 0.2, 0.5, 0.8, and 1.0 T.
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Figure 37 Using R to provide graphical output for the fully implicit scheme, Case I, Component B: progressive concentration profiles of Component B in the liquid phase showing time-dependent penetration for t = 0, 0.2, 0.5, 0.8, and 1.0 T
Case II: R = 1, m = 1, X = 10, NX = 20, T = 10, NT = 100
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Figure 38 Using R to provide graphical output for the fully implicit scheme, Case II, Component A: progressive concentration profiles of Component A in the liquid phase showing time-dependent penetration for t = 0, 0.2, 0.5, 0.8, and 1.0 T.
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Figure 39 Using R to provide graphical output for the fully implicit scheme, Case II, Component B: progressive concentration profiles of Component B in the liquid phase showing time-dependent penetration for t = 0, 0.2, 0.5, 0.8, and 1.0 T.
(c)
Evaluation of the Reaction Rate Enhancement Factor FE:
From the FORTRAN program output, the integrals in Equations (RT-25A) and (RT-25B) may be evaluated, by a summation approximation, viz. :

FEA = (1/T)ʃ0T (∂a/∂x)x=0 dT = (1/T) ∑0T {(ΔA/ΔX)x=0 ΔT}
(RT-26A)
= (ΔT/T) ∑0T {(ΔA/ΔX)x=0},
for a fixed ΔT, where (ΔA/ΔX)x=0 = gradient of the A vs. x profile, at x = 0 .
In order to avoid the error owing to the abruptness of the numerical concentration gradient at the interface, viz. at T = 02, a more realistic value of FE may be obtained by evaluating the gradient integral by leaving out the value at T = 02, viz., the integral is taken from T = 22, to T = 102, or over the final 8 units of time T (out of the total of 10 units of T):
ΔT = T/4 = 8/4 = 2, where T = 8, and ΔT/T = 2/8 = 0.25
Case I: For Gas A, ΔX = 1/15 = 0.0667
At T = 22 : (ΔA/ΔX)x=0 = –(0.7331 – 1.0000)/0.0667 = 4.0015
At T = 52 : (ΔA/ΔX)x=0 = –(0.8315 – 1.0000)/0.0667 = 2.5262
At T = 82 : (ΔA/ΔX)x=0 = –(0.8669 – 1.0000)/0.0667 = 1.9955

At T = 102 : (ΔA/ΔX)x=0 = –(0.8809 – 1.0000)/0.0667 = 1.7856
and ∑0T {(ΔA/ΔX)x=0} = 10.3088
Hence, FEA = (ΔT/T) ∑0T {(ΔA/ΔX)x=0} = (0.25) (10.3088) = 2.5772
Similarly, for Gas B,
FEB = (ΔT/T) ∑0T {(ΔA/ΔX)x=0} = (0.25) (10.1648) = 2.5412
Case II: Similarly, for Gas A, ΔX = 1/20 = 0.0500
At T = 22 : (ΔA/ΔX)x=0 = –(0.7984 – 1.0000)/0.0500 = 4.0320
At T = 52 : (ΔA/ΔX)x=0 = –(0.8733 – 1.0000)/0.0500 = 2.5340
At T = 82 : (ΔA/ΔX)x=0 = –(0.9000 – 1.0000)/0.0500 = 2.0000

At T = 102 : (ΔA/ΔX)x=0 = –(0.9106 – 1.0000)/0.0500 = 1.7880
and ∑0T {(ΔA/ΔX)x=0} = 10.3540
Hence, FEA = (ΔT/T) ∑0T {(ΔA/ΔX)x=0} = (0.25) (10.3540) = 2.5885
Similarly, for Gas B,
FEB = (ΔT/T) ∑0T {(ΔA/ΔX)x=0} = (0.25) (10.2080) = 2.5520
In the work of Roper et al.[32], the results were presented as FE vs √T, for various parametric values of R and m. For T = 10, and for R = 1, and m = 1, at √T = √10 = 3.1623, the value obtained by Roper et al. was: FE = 2.42 .
In this work, the four cases of computed values of FE are: 2.5772, 2.5412, 2.5885, and 2.5520, averaging 2.5572, which are in satisfactory agreement with Roper’s results (to within about 5%).
(d)
Boundary Conditions
Figure 3 shows graphs of the x-value for which a and b become zero (≤0.001) versus the t-value at which this occurs. These results show that, although the values of a and b become small large values of t, the approach is not asymptotic. This seems to indicate that the values of a and b become small gradually, and are bounded: thus confirming the boundary condition postulate of the mathematical model proposed in this work. This is further illustrated by the plot shown in Figure 4: {(R/m)b – a} versus x, as outlined in Appendix A.
APPENDIX A
On the Boundary Conditions of a(x, t) and b(x, t) at Large Values of x and t: Equation (3C)
Roper et al. [32] considered only the case when n1 = 1 = n2: instead of taking a and b to be bounded as x approached infinity, for all t, they assumed the condition that
lim x→ ∞ a(x, t) = 0 = lim x→ ∞ b(x, t)
However, this assumption seems to lead to a contradiction except for the special case when R = 1 = m, for which they obtained the explicit steady state solution mentioned in this work.
To demonstrate this contradiction, let the steady solution be
α(x) = lim x→ ∞ a(x, t) and β(x) = lim x→ ∞ b(x, t)
so that one obtains, from Equations (6A) and (6B):
α”(x) = αn1βn2 and R β”(x) = m αn1βn2
Combining the last two equations by eliminating αn1βn2, one obtains:
∂2/∂x2 { α – (R/m) β } = 0
Hence on integrating twice,
α(x) – (R/m) β(x) = c1x + c2
Now, c1 = 0, for otherwise {α – (R/m) β} → ∞ as x → ∞ .
Moreover, at x = 0, α(0) = (R/m) β(0) = 1 – (R/m) = c2. Hence,
α(x) – (R/m) β(x) = 1 – (R/m)
and lim x→∞ [α(x) – (R/m) β(x)] = 1 – (R/m) ≠ 0, unless R = m.
Thus the boundedness condition as x → ∞ seems to be at least more mathematically consistent. Physically, this assumption of boundedness also appears to be realistic and consistent. In other words, while both a and b approaches zero at large values of x and t, they do not become zero at the same point in space and time.
APPENDIX B
FORTRAN IV Program for the Fully-Implicit Scheme, Section 3 (d), for Solving the System Equations (RT-7A), (RT-7B), and (RT-7C)
The discretizing equations for this system, using the fully-implicit scheme, are given by Equations (RT-16A) and (RT-16B), which may be written in matrix form as Equations (RT-17A) and (RT-17B).
Setting the Choleski iterative error to be ≤ ½ x 10-4, for double precision computations, the following parameters are chosen:
Case I: R = 1, m = 1, X = 10, NX = 15, T = 10, NT = 100
Case II: R = 1, m = 1, X = 10, NX = 20, T = 10, NT = 100
The following computer program, written in FORTRAN IV, was used for running in a mainframe computer system. Results, truncated to four significant digits, are obtained, listed below, and presented graphically using the opened-source R program, showing the time-dependent penetration of the mass transfer process, under a second-order irreversible process:
FORTRAN IV Program
C     Bertram K. C. Chan 

C     

C     bertchan@yahoo.com

C     

C     SIMULTANEOUS ABSORPTION AND CHEMICAL REACTION

C     OF TWO GASES IN A LIQUID

C

C     PENETRATION THEORY MODEL

C

C     NUMERICAL SOLUTION BY FINITE DIFFERENCE METHOD

C

C     IMPLICIT SCHEME, CHOLESKI METHOD WITH ITERATIONS

C

C

C

          IMPLICIT REAL*8(A-H,O-Z)

          DIMENSION A(51,102), B(51, 102)

          DIMENSION C(51), U(50), ALPHA(51), BETA(50), CL(51)

          DIMENSION GAMMA(51), G(51)

          DIMENSION DELTA(51)

          DIMENSION D(51), V(50), AA(51), BB(50), DM(50)

          DIMENSION W(51), H(51)

          DIMENSION S(51)

          DIMENSION A1(50), A2(50)

          DIMENSION B1(50), B2(50)

C

   100   READ (1,1000) N

           WRITE (3,1001) N

  1000  FORMAT (I3)

  1001  FORMAT (I4)

C

            NN = -1

            IF (N.EQ.NN) GO TO 999

            CONTINUE

C

C  TO INPUT THE PARAMETERS AND VARIABLES

C

            READ (1,1002) R

            WRITE (3,1003) R

  1002   FORMAT (F16.6)

  1003   FORMAT (5H R   , F16.6)

C

            READ (1,1002) XM

            WRITE (3,1004) XM

  1004   FORMAT (5H M   ,F16.6)

C

            READ (1,1002) X

            WRITE (3,1005) X

  1005   FORMAT (5H X   ,F16.6)

C

            READ (1,1002) T

            WRITE (3,1006) T

  1006   FORMAT (5H T   ,F16.6)

C

            READ (1,1000) NX

            WRITE (3,1007) NX

  1007   FORMAT (6H NX   ,I4)

C

            READ (1,1000) NT

            WRITE (3,1008) NT

  1008   FORMAT (6H NT   ,I4)

C

           DX = X/NX      

           DT = T/NT

C

           NX1 = NX+1

           NT1 = NT+1

           NT2 = NT+2   

C

C  TO INPUT THE BOUNDARY CONDITIONS AND INITIAL

C  CONDITIONS

C 

           READ (1,1002) AIJ

           READ (1,1002) BIJ

           READ (1,1002) ANXIJ

           READ (1,1002) BNXIJ

           READ (1,1002) AI1

           READ (1,1002) bi1

C

           WRITE (3,1009) AIJ, BIJ, ANXIJ, BNXIJ, AI1, BI1

   1009 FORMAT (6F10.4)

C

C  TO PRE-SET THE FIELDS

C   

          DO 1     I = 1,NX1,1

          DO 2     J = 1,NT2,1

          A(I,J) = AI1

          B(I,J) = BI1

      2  CONTINUE

1 CONTINUE

C

C  TO OUTPUT THE INITIAL CONDITIONS

C

          J = 1

          WRITE (3,1001) J

          WRITE (3,1010)  (A(I,J),  I = 1,NX)

          WRITE (3,1010)  (B(I,J),  I = 1,NX)

 1010  FORMAT (5E16.9)

          WRITE (3,99)

     99  FORMAT (/)

C

C  TO SET THE BOUNDARY CONDITIONS

C

          DO 3     J = 2,NT2,1

          A(I,J) = A1J

          B(I,J) = B1J

          A(NX1,J) = ANX1J

          B(NX1,J) = BNX1J

3  CONTINUE

C

C  TO OUTPUT THE FIRST BOUNDARY CONIN

C

         J = 2

         WRITE (3,1001) J

         WRITE (3,1010)  (A(I,J),  I = 1,NX)

         WRITE (3,1010)  (B(I,J),  I = 1,NX)

C

C  TO START THE COMPUTATION

C

         DO 500     I = 2,NX1,1

         A(I,3) = A(I,2)

         B(I,3) = B(I,2)

500 CONTINUE

         DO 101     J = 2,NT2,1

C

C

C  TO CALCULATE A(I,J+1) FROM A(I,J) AND B(I,J)

C

C  ITERATING ON  A  AND  B

C

C  TO OBTAIN THE VECTOR A(J)

         GAMMA(2)=(DT/(DX**2))+A(2,J)-DT*B(2,J + 1)*A(2,J + 1)

         D0 105     I = 3,NX,1

         GAMMA(I) = A(I,J) - DT*B(I,J+1)*A(I,J+1)

  105  CONTINUE

C

C  TO OBTAIN THE VECTOR B(J)

         W(2) = R*(DT/(DX**2))+B(2,J)-XM*DT*A(2,J+1)*B(2,J+1)

         DO 205     I = 3,NX1,1

         W(I) = B(I,J) -XM*DT*A(I,J+1)*B(I,J+1)

  205  CONTINUE

C

         DO 700     IT = 1, 10

C  TO OBTAIN THE POSITIVE DEFINITE SYMMETRIC 

C  TRI-DIAGONAL MATRIX C

C(2)0

         DO 102     I = 2,NX1,1

         C(I) = 1.0 + (2.0*(DT/(DX**2)))

  102  CONTINUE

C

         DO 103     I = 2,NX,1

         U(I) = - (DT/(DX**2))

 103  CONTINUE

 C

C  TO COMPUTE THE LOWER TR0-DIAGONAL MATRIX L

C

C

         ALPHA(2) = DSQRT(C(2))

         DO 104     I = 2,NX,1

         BETA(I) = U(I)/A;PHA(I)

         CL(I+1) = C(I+1) – ((BETA(I))**2)

        ALPHA(I+1) = DSQRT(CL(I+1))

 104  CONTINUE        

C

C  COMPUTE THE VECTOR G

         G(2) = GAMMA(2)/ALPHA(2)

C

         DO 106    I = 3,NX1,1

         G(I) = (GAMMA(I) - (BETA(I-1)*G(I-1)))/APLHA(I)

  106  CONTINUE

C

C  TO COMPUTE THE VECTOR A(J+1)

C

         DELTA(NX1) = G(NX1)/ALPHA(NX1)

C

         I = NX1-1

 107  CONTINUE

         DELTA(I) = (G(I) - (BETA(I)*DELTA(I+1)))/ALPHA(I)

         I = I-1

         IF (I.GE.2)  GO TO 107

         CONTINUE

C

C  TO OBTAIN A(I,J+1)

C

           DO 108     I = 2,NX1,1
        A(I,J+1) = DELTA(I)

108  CONTINUE

C

C

C  TO CALCULATE B(I,J+1) FROM B(I,J) AND A(I,J+1)

C

C

         DO 202     I = 2,NX1,1

         D(I) = 1.0+(2.0*(DT/DX**2))*R)

  202  CONTINUE

C

         DO 203     I = 2,NX,1

         V(I) = -((DT/(DX**2))*R)

  203  CONTINUE

C

C  TO COMPUTE THE LOWER TRI-ANGULAR MATRIX A

C

C

         AA(2) = DSQRT(D(2))

         DO 204     I = 2,NX,1

         BB(I) = V(I)/AA(I)

         DM(I+1) = D(I+1) – ((BB(I)**2)

         AA(I+1) = DSQRT(DM(I+1))

 204  CONTINUE

C

C  TO COMPUTE THE VECTOR H

C

         H(2) = W(2)/AA(2)

C

         DO 206     I = 3,NX1,1

         H(I) = (W(I) –BB(I-1)*H(I-1))/AA(I)

  206  CONTINUE

C

C  TO COMPUTE THE VECTOR B(J+1)

C

         S(NX1) = H(NX1)/AA(NX))

C

         I = NX1-1

 207  CONTINUE

         S(I) = (H(I) – (BB(I)*S(I+1)))/AA(I)

         I = I-1

         IF (I.GE.2)  GO TO 207

          CONTINUE

C

C  TO OBTAIN B(I,J+1)

C

         DO 208     I = 2,NX,1

        B(I,J+1) = S(I)

208  CONTINUE

C

         IF (IT.GT.1)  GO TO 707

         CONTINUE

         DO 800     I=2,NX1

800  AI(I) = A(I,J+1)

         DO 900     I = 2,NX1

900  BI(I) = B(I,J+1)

         GO TO 706

707  CONTINUE

         DO 801     I = 2,NX1

801  A2(I) = A(I,J+1)

         DO 901     I = 2,NX1

901  B2(I) = B(I,J+1)

         ERA = DABS(A1(2) = A2(2))

         DO 802     I = 3,NX1

         ERA1 = DABS(A1(I) – a2(I))

         IF  (ERA1.LT.ERA)  GO TO 802

         ERA = ERA1

802  CONTINUE

         ERB = DABS(B1(2) – B2(2))

         DO 902     I = 3,NX1

         ERB1 = DABS(B1(I) – B2(I)) 

         IF (ERB1.LT.ERB)  GO TO 902

         ERB = ERB1

902  CONTINUE

         ERROR = 0.00005

         ERR = ERA

         IF (E.GT.ERB)  GO TO 705

         ERR = ERB

705  CONTINUE

799  FORMAT (3E16.9)

         IF (ERR.LE.ERROR)  GO TO 101

         COMTINUE

706  CONTINUE

         DO 803     I = 2,NX1

803  A1(I) = A(I,J+1)

         DO  903     I = 2,NX1

903  B1(I) = B(I,J+1)

         DO 701     I = 2,NX1

701  B(I,J) = B(IJ+1)

700 CONTINUE

101 CONTINUE

C

C

C TO PRINT OUT THE FINAL RESULTS OF THIS RUN

C

C

         DO 4     J = 2,NT2,10

         WRITE (3,1001) J

         WRITE (3,1010) (A(I,J), I = 1,NX1))

         WRITE (3,1010) (B(I,J), I = 1,NX1))

     4  CONTINUE

C

C

C  TO OUTPUT THE RESULTS FOR THE FIRST 10 TIME INTERVALS

C

C

         DO 5     J = 1,I2,1

         WRITE (3,1001) J

         WRITE (3,1010)  (A(I,J), I = 1,NX1)

         WRITE (3,1010)  (B(I,J), I = 1,NX1)

4 CONTINUE

C

C  END OF CALCULATIONS FOR THIS SET OF DATA

C

C  IS THERE ANOTHER SET OF DATA TO BE PROCESSED?

C      

         GO TO 100

C

C  END OF DATA

C

999  CONTINUE

        STOP

        END

Outputs of these calculations are plotted: Figures 35, 36, 37, and 38, using the R software, as outlined in APPENDIX C.
APPENDIX C
Using the R software for plotting the results of the numerical solutions of the system Equations (RT-7A), (RT-7B), and (RT-7C), to obtain:
 SHAPE  \* MERGEFORMAT 



Figures 35 and 36 (for Case I)
 SHAPE  \* MERGEFORMAT 



Figures 37 and 38 (for Case II)
In the computed numerical solutions for each of the two cases
Case I: R = 1, m = 1, X = 10, NX = 15, T = 10, NT = 100
Case II: R = 1, m = 1, X = 10, NX = 20, T = 10, NT = 100
there are two independent variables:
(i)
Displacement-points, x, and
(ii)
Time-points, t.
(1)
Displacement points: All displacement-points are selected for presentation –
Case I: there are (NX + 1) = 15 + 1 = 16 displacement-points.
Case II: there are (NX + 1) = 20 + 1 = 21 displacement-points.
(2)
There are (NT + 1) = 100 + 1 = 101 time-points.
For each case, five discrete time points are chosen for presentation: at time-points: 1, 21, 51, 81, and 101.
The requisite R code for processing the output data sets (from the FORTRAN program computations) are as follows:
R version 2.10.1 (2009-12-14)

Copyright (C) 2009 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

[Previously saved workspace restored]
Case I: R = 1, m = 1, X = 10, NX = 15, T = 10, NT = 100
# Defining the Displacement Points
> x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
# Defining the Corresponding Component Concentration Values  in the Liquid Phase
> A2 <- c(1.0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

> B2 <- c(1.0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
# Inputting the Selected Data from the FORTRAN Program Output
> A22 <- c(1.0, 0.7331, 0.4971, 0.3118, 0.1812, 0.0981, 0.0497, 0.0237,
+                 0.0107,0.0046, 0.0019, 0.0007, 0.0003, 0.0001, 0.000034, 0.000010)
> B22 <- c(1.0, 0.7396, 0.5078, 0.3235, 0.1916, 0.1059, 0.0548, 0.0267, 0.0123,

+                 0.0054, 0.0023, 0.0009, 0.0003, 0.0001, 0.000046, 0.000014)
> A52 <- c(1.0, 0.8315, 0.6706, 0.5239, 0.3961, 0.2897, 0.2049, 0.1401,

+                 0.0927, 0.0594, 0.0368, 0.0221, 0.0128, 0.0071, 0.0037, 0.0016)
> B52 <- c(1.0, 0.8332, 0.6737, 0.5281, 0.4009, 0.2945, 0.2094, 0.1440,

+                 0.0959, 0.0618, 0.0386, 0.0233, 0.0136, 0.0077, 0.0040, 0.0017)
> A82 <- c(1.0, 0.8669, 0.7375, 0.6152, 0.5030, 0.4028, 0.3158, 0.2423,
+                 0.1819, 0.1336, 0.0958, 0.0670, 0.0455, 0.0295, 0.0175, 0.0081)
> B82 <- c(1.0, 0.8677, 0.7391, 0.6175, 0.5057, 0.4057, 0.3188, 0.2452,
+                 0.1846, 0.1359, 0.0978, 0.0687, 0.0467, 0.0304, 0.0181, 0.0084)
> A102 <- c(1.0, 0.8809, 0.7646, 0.6533, 0.5494, 0.4544, 0.3695, 0.2954,

+                   0.2319, 0.1786, 0.1349, 0.0994, 0.0710, 0.0483, 0.0299, 0.0142)
> B102 <- c(1.0, 0.8752, 0.7535, 0.6376, 0.5302, 0.4329, 0.3469, 0.2728,

+                  0.2104, 0.1590, 0.1176, 0.0850, 0.0595, 0.0397, 0.0242, 0.0114)
>
# Collating the Data for Component A
> h <- c(A2, A22, A52, A82, A102)
> xx2 <- c(x, x, x, x, x)
# Plotting the Data for Component A
> plot (xx2, h)
> lines (x, A2)
> lines (x, A22)
> lines (x, A52)
> lines (x, A82)
> lines (x, A102)
> title ("Progressive Concentration Profiles of Component A in the
Liquid Phase Showing Time-dependent Penetration for t = 0,
+ 0.2T, 0.5T, 0.8T, and 1.0T")
# Outputting: Figure 36.
# Collating the Data for Component B
> g <- c(B1, B22, B52, B82, B102)
# Plotting the Data for Component B
> plot (xx2, g)
> lines (x, B2)
> lines (x, B22)
> lines (x, B52)
> lines (x, B82)
> lines (x, B102)
> title ("Progressive Concentration Profiles of Component B in the
# Liquid Phase Showing Time-dependent Penetration for
# t = 0, 0.2T, 0.5T, 0.8T, and 1.0T")
> Outputting: Figure 37.
>
Case II: R = 1, m = 1, X = 10, NX = 20, T = 10, NT = 100
# Defining the Displacement Points
> x2 <-
+         c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)
# Defining the Corresponding Component Concentration Values in the Liquid Phase
> A22 <- c(1.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
> B22 <- c(1.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
# Inputting the Selected Data from the FORTRAN Program Output
> A222 <- c(1.0, 0.7984, 0.6102, 0.4459, 0.3116, 0.2083, 0.1334, 0.0820,
+                  0.0484, 0.0276, 0.0152, 0.0081, 0.0042, 0.0021, 0.0010, 0.000484, 0.000224,
+                 0.000102, 0.000045, 0.000019, 0.000007)
> B222 <- c(1.0, 0.8034, 0.6191, 0.4572, 0.3234, 0.2193, 0.1426, 0.0892,
+                 0.0536,0.0311,0.0174, 0.0095, 0.0050, 0.0025, 0.0012, 0.000615, 0.000291,
+                 0.000135, 0.000061, 0.000026, 0.000010)
> A252 <- c(1.0, 0.8733, 0.7498, 0.6326, 0.5241, 0.4263, 0.3402, 0.2664, 0.2047,
+                 0.1542, 0.1140, 0.0827, 0.0588, 0.0411, 0.0281, 0.0189, 0.0124, 0.0080,
+                 0.0049, 0.0028, 0.0013)
> B252 <- c(1.0, 0.8746, 0.7523, 0.6360, 0.5283, 0.4309, 0.3450, 0.2712,
+                 0.2091, 0.1583, 0.1175, 0.0857, 0.0613, 0.0430, 0.0297, 0.0200, 0.0133,
+                 0.0086, 0.0053, 0.0031, 0.0014)
> A282 <- c(1.0, 0.9000, 0.8016, 0.7062, 0.6154, 0.5301, 0.4514, 0.3798,
+                 0.3158, 0.2593, 0.2104, 0.1685, 0.1332, 0.1040, 0.0800, 0.0605, 0.0449,
+                 0.0323, 0.0222, 0.0138, 0.0066)
> B282 <- c(1.0, 0.9006, 0.8028, 0.7080, 0.6176, 0.5327, 0.4542, 0.3828,

+                 0.3188, 0.2623, 0.2132, 0.1711, 0.1356, 0.1061, 0.0818, 0.0620, 0.0461,
+                 0.0333, 0.0229, 0.0143, 0.0066)
> A2102 <- c(1.0, 0.9106, 0.8223, 0.7363, 0.6534, 0.5747, 0.5008, 0.4323,
+                 0.3695, 0.3128, 0.2621, 0.2174, 0.1783, 0.1445, 0.1156, 0.0909, 0.0700,
+                 0.0523, 0.0370, 0.0236, 0.0115)
> B2102 <- c(1.0, 0.9110, 0.8232, 0.7375, 0.6550, 0.5766, 0.5029, 0.4345,
+                 0.3719, 0.3152, 0.2645, 0.2196, 0.1804, 0.1464, 0.1173, 0.0924, 0.0713,
+                 0.0533, 0.0378, 0.0241, 0.0118)
>
# Collating the Data for Component A
> hA2 <- c(A22, A222, A252, A282, A2102)
> xx22 <- c(x2, x2, x2, x2, x2)
>
# Plotting the Data for Component A
> plot (xx22, hA2)
> lines (x2, A22)
> lines (x2, A222)
> lines (x2, A252
> lines (x2, A282)
> lines (x2, A2102)
> title ("Progressive Concentration Profiles of Component A in the
# Liquid Phase Showing Time-dependent Penetration for
# t = 0, 0.2T, 0.5T, 0.8T, and 1.0T")
# Outputting: Figure 38.
>
# Collating the Data for Component
> hB2 <- c(B22, B222, B252, B282, B2102)
>
# Plotting the Data for Component B
> plot (xx22, hB2)
> lines (x2, B22)
> lines (x2, B222)
> lines (x2, B252)
> lines (x2, B282)
> lines (x2, B2102)
> title ("Progressive Concentration Profiles of Component B in the
# Liquid Phase Showing Time-dependent Penetration for t = 0,
# 0.2T, 0.5T, 0.8T, and 1.0T")
# Outputting: Figure 39.
>
Part 2: A Uniqueness Theorem of the Governing Simultaneous Semi-Linear Parabolic Partial Differential Equations
From physical considerations, a(x, t) and b(x, t) may be restricted to non-negative, bounded, and continuous functions. The following uniqueness theorem for a and b will be proved:
Uniqueness Theorem
If a, b is a classical solution of Equations (RT-3A), (RT-3B), and (RT-3C), then this system has at most one solution.
Proof of the Theorem – The inhomogeneous boundary conditions in Equations (RT-3A) and (RT-3B) may be transformed to homogeneous boundaries by modifying the dependent variables a and b in Equation (RT-3C) .
Let as and bs be the steady state solutions of Equations (RT-3A), (RT-3B), and (RT-3C):

∂2a/∂x2 = ∂a/∂t + ab
(RT-3A)

R∂2b/∂x2 = ∂b/∂t + mab
(RT-3B)
with the boundary conditions on a(x, t) and b(x, t) given by:

a(0, t) = 1 = b(0, t)
}

a(x, 0) = 0 = b(x, 0)
}
(RT-3C)


a(x, z) and b(x, t) are bounded as x, t → ∞
}
viz., ∂as/∂t = 0 = ∂bs/∂t, and as = as(x), bs = bs(x)
hence
∂2as/∂x2 = asbs
(RT-27A)

R∂2b/∂x2 = masbs
(RT-27B)
Also
as(0) = 1 = bs(0)
(RT-27C)
Now, let a1 = as – a
b1 = bs – b
From physical considerations: 
as ≥ a, and bs ≥ b,
(RT-28A)
hence
a1 ≥ 0, and b1 ≥ 0,
(RT-28B)
Writing a = as – a1, and b = bs – b1, and substituting in Equations (RT-3A) and (RT-3B), one obtains

∂2as/∂x2 – ∂2a1/∂x2 = ∂as/∂t – ∂a1/∂t + (as – a1)(bs – b1)
(RT-29A)

R ∂2bs/∂x2 – R ∂2b1/∂x2 = ∂bs/∂t – ∂b1/∂t + m(as – a1)(bs – b1)
(RT-29B)
Similarly, substituting in Equation (RT-3C), one obtains

as(0) – a1(0, t) = 1 = bs(0) – b1(0, t), t > 0
(RT-29C)

as(x) – a1(x, 0) = 0 = bs(x) – b1(x, 0), x > 0
(RT-29D)
Using Equations (RT-3A) and (RT-3B), the following transformed system is obtained from simplifying Equations (RT-29A) and (RT029B):

∂2a1/∂x2 = ∂a1/∂t – a1b1 + (a1bs + as b1)
(RT-30A)

R∂2b1/∂x2 = ∂b1/∂t – ma1b1 + m(a1bs – asb1)
(RT-30B)
with homogeneous initial and boundary conditions

a1(x, 0) = 0 = b1(x, 0), x > 0
(RT-30C)

a1(0, t) = 0 = b1(0, t), t > 0
(RT-30D)
It is seen that homogeneity of the boundaries, Equation (RT-29C) and (RT-29D), has been obtained at the expense of inhomogeneity of the system: Equations (RT-29A) and (RT-29B), which may be written, using suffix notations for simplicity and convenience (where fxx ≡ ∂2f /∂x2, and ft ≡ ∂f /∂t):

a1t – a1xx – a1b1 + a1bs + asb1 = 0
(RT-31A)

b1t – Rb1xx – ma1b1 + ma1bs – masb1 = 0
(RT-31B)
Let a’ and b’ be another solution of Equations (RT-3A) and (RT-3B), and let a2 = as – a’
b2 = bs – b’
then
a2t – a2xx – a2b2 + a2bs + asb2 = 0
(RT-32A)

b2t – Rb2xx – ma2b2 + ma2bs – m asb2 = 0
(RT-32B)
If
A = a1 – a2, and B = b1 – b2,
then the Theorem will be established if it can be shown that
A = 0 = B, for all t.
Now, combining terms from Equations (RT-30A & RT-30B) and (RT-31A & RT-31B):
At – Axx – a1b1 + a2b2 + a1bs – a2bs + asb1 – asb2 = 0
or,
At – Axx – (a1b1 + a2b2) +(a1bs – a2bs) + (asb1 – asb2) = 0
(RT-33A)
Bt – RBxx – ma1b1 + ma2b2 + ma1bs – ma2bs – masb1 + masb2 = 0
or,
Bt – RBxx – m(a1b1 – a2b2) + m(a1bs – a2bs) – mas(b1 – b2) = 0
(RT-33B)
Now, 
– a1b1 + a2b2 = – a1b1 + a2b1 – a2b1 + a2b2
= – (a1 – a2) b1 – a2 (b1 – b2)
= – Ab1 – a2B
}

a1bs – a2bs = (a1 – a2)bs = Abs
}
(RT-34)

asb1 – asb2 = as(b1 – b2) = asB
}
Substituting the relationships expressed in (RT-33) into Equations RT-32A) and (RT-32B), the result is:
At – Axx + (- Ab1 – a2B) + (Abs) + (asB) = 0
Bt – RBxx – m(- Ab1 – a2B) + m(Abs) – m(asB) = 0
or, 
At – Axx + (bs – b1)A+ (as – a2)B = 0
(RT-35A)

Bt – RBxx – m(bs – b1)A + m(as – as2) = 0
(RT-35B)
with homogeneous initial and boundary conditions:

A(x, 0) = 0 = B(x, 0), x > 0
}
(RT-35C)

A(0, t) = 0 = B(0, t), t > 0
}
 (RT-35D)
Multiplying Equation (3-11A) by A, and integrating with respect to all possible values of x, one obtains:

ʃ0∞ { At – Axx + (bs – b1) A + (as – a2) B}A dx = 0
(RT-36A)
For simplicity, the limits notation of (0, ∞) are omitted in the remaining analysis, so that Equation (RT-36A) may be written as

ʃAt A dx – ʃAxx A dx+ ʃ(bs – b1) A2 dx+ ʃ(as – a2) AB dx = 0
(RT-37)
Now,
(a)
ʃAt A dx = ʃ (∂A/∂t)A dx =ʃ (A∂A/∂t) dx =ʃ (∂ ½A2/∂t) dx =½(d/dt) ʃA2dx
(i)
and writing ||A|| = (A, A)½ = [ ʃ AA dx ]½ = [ ʃ A2 dx ]½, hence ʃA2dx = ||A||2
(ii)
and combining (i) and (ii), ʃAt A dx = ½ (d/dt)||A||2
(b)
–ʃAxx A dx = -[ Axx A ]0∞ + ʃ Ax Ax dx, integrating by parts
= 0 + ʃ [Ax ]2 dx, using the conditions of Equation (RT-35C)
= ʃ [Ax ]2 dx
≥ 0
(c)
Using the conditions of Equation (RT-34C, D): ʃ(bs – b1)A2 dx ≥ 0
(iii)
Hence, the conditions (a), (b), and (c) reduce Equation (RT-37) to the following inequality:

½ (d/dt) ||A||2 + ʃ(as – a2) AB dx ≤ 0
(RT-38A)
Similarly, from Equation (RT-35B), multiplying by B, and integrating with respect to all possible values of x, one obtains:

½ (d/dt) ||B||2 + m ʃ(as – a2) AB dx ≤ 0
(RT-38B)
From Equation (RT-38A): ½ (d/dt) ||A||2 ≤ – ʃ(as – a2) AB dx
or
(d/dt) ||A||2 ≤ – 2 ʃ(as – a2) AB dx
≤ |2 ʃ(as – a2) AB dx |
≤ |2 ʃ(as – a2) dx| |ʃAB dx|, *
≤ 2 |ʃ(as – a2) dx| |(ʃA2 dx)½| |(ʃB2 dx)½|,*
≤ 2 ||as – a2||L∞ (0, ∞) ||A|| ||B||
≤ 2α||A|| ||B||, where α= ||as – a2||L∞(0, ∞)
≤ α (||A||2 + ||B||2), **
*Holder’s Inequality [3]
**Theorem of the Arithmetic and Geometric Means [3]
Hence,
(d/dt)||A||2 – α(||A||2 + ||B||2) ≤ 0
(RT-39)
and similarly,
(d/dt)||B||2 – β(||A||2 + ||B||2) ≤ 0
RT-40)
where β = mα
Now let λ = λ(t) = ||A||2 + ||B||2, then

λ ≥ 0
(RT-41)
And, on adding Equation (RT-39) and (RT-40), one obtains:
(d/dt) λ – (α + β)λ ≤ 0
so that
λ ≤ λ(0)exp (α+β)t
= 0

because λ(0) = 0, by the condition of homogeneity of the boundaries. Thus,

λ ≤ 0
(RT-42)
Conditions required by Equations (RT-41) and (RT-42) imply that

λ ≡ 0
(RT-43)

which means

A = 0 = B, for all t
(RT-44)
This completes the proof of the Uniqueness Theorem.
R Functions in the CRAN Package ReacTran[24]
This package, published on August 11, 2011, by K. Soetaert,[31] provides R functions and over 20 programs for developing models that may represent simultaneous advective-diffuse mass transfer with biomolecular reaction, in one-, two-, or three-dimensions, including transport models in bodies of varying shapes, in porous media, and in estuaries.
To illustrate this approach, three worked examples, in 1-, 2-, and 3-dimensions, are selected. They are, respectively: tran.1D, tran.2D, and tran.3D.

The R function tran.1D(), in the CRAN package ReacTran, provides an estimate of the time rate of mass transfer (i.e. the rate of change of a concentration owing to combined diffusion and advection) of a liquid medium (volume fraction constant and equal to one) or in a porous medium (volume fraction variable and lower than one). The interfaces between grid cells may have a variable cross-sectional area, e.g. when modeling spherical or cylindrical geometries.
The usage formula of this function tran.1D() is:
tran.1D(C, C.up = C[1], C.down = C[length(C)], flux.up = NULL,
flux.down = NULL, a.bl.up = NULL, a.bl.down = NULL,
D = 0, v = 0, AFDW = 1, VF = 1, A = 1, dx,
full.check = FALSE, full.output = FALSE)
for which the arguments are
C
concentration, expressed per unit of phase volume, defined at the centre of each grid cell. A vector of length N [M/L3]
C.up
concentration at upstream boundary. One value [M/L3]
C.down
concentration at downstream boundary. One value [M/L3]
flux.up
flux across the upstream boundary, positive = INTO model domain.
flux.down
flux across the downstream boundary, positive = OUT of model domain.
a.bl.up
convective transfer coefficient across the upstream boundary layer. Flux = a.bl.up*(C.up-C0). One value [L/T]
a.bl.down
convective transfer coefficient across the downstream boundary layer (L). Flux = a.bl.down*(CL-C.down). One value [L/T]
D
diffusion coefficient, defined on grid cell interfaces.
v
advective velocity, defined on the grid cell interfaces. Can be positive (downstream flow) or negative (upstream flow).
AFDW
Advective Finite Difference Weight = weight used in the finite difference scheme for advection, defined on grid cell interfaces; backward = 1, centered = 0.5, forward = 0; default is backward.
VF
Volume fraction defined at the grid cell interfaces.
A
Interface area defined at the grid cell interfaces.
dx
distance between adjacent cell interfaces (thickness of grid cells).
full.check
logical flag enabling a full check of the consistency of the arguments (default = FALSE; TRUE slows down execution by 50 percent)
full.output
logical flag enabling a full return of the output (default = FALSE; TRUE slows down execution by 20 percent)
The boundary conditions may assumes any of the following values, in order of priority):
(1) zero-gradient.

(2) fixed concentration.

(3) convective boundary layer.

(4) fixed flux.
The default condition is the zero gradient.
The fixed concentration condition overrules the zero gradient.
The convective boundary layer condition overrules the fixed concentration and zero gradient.
The fixed flux overrules all other specifications.
Transport properties:
The diffusion coefficient (D), the advective velocity (v), the volume fraction (VF), the interface surface (A), and the advective finite difference weight (AFDW) can either be specified as one value, a vector or a 1D property list as generated by the function setup.prop.1D().
When a vector, this vector must be of length N+1, defined at all grid cell interfaces, including the upper and lower boundary. The finite difference grid (dx) is specified either as one value, a vector or a 1D grid list, as generated by setup.grid.1D.
Output Results:
dC
the rate of change of the concentration C owing to transport, defined in the center of each grid cell. The rate of change is expressed in terms of per unit of phase volume [M/L3/T].
C.up
concentration at the upstream interface [M/L3] only when full.output = TRUE.
C.down
concentration at the downstream interface. One value [M/L3] only when full.output = TRUE
dif.flux
diffusive flux across at the interface of each grid cell. A vector of length N+1 [M/L2/T] only when (full.output = TRUE)
adv.flux
advective flux across at the interface of each grid cell. A vector of length N+1 [M/L2/T] only when (full.output = TRUE)
flux
total flux across at the interface of each grid cell. A vector of length N+1 [M/L2/T]. only when (full.output = TRUE)
flux.up
flux across the upstream boundary, positive = INTO model domain. One value [M/L2/T]
flux.down
flux across the downstream boundary, positive = OUT of model domain. One value [M/L2/T]
Note:

The advective equation is not checked for mass conservation.
The following example program (from the tran.1D illustrative vignette), in R code-segments, shows some applications of the CRAN package ReacTran:
> install.packages("ReacTran")
> require(ReacTran)
Loading required package: ReacTran

Loading required package: rootSolve

Loading required package: deSolve

Loading required package: shape
> library(ReacTran)
> ls("package:ReacTran")
[1]
"advection.1D"
"advection.volume.1D"
"fiadeiro"
[4]
"g.cylinder"
"g.sphere"
"g.spheroid"
[7]
"p.exp"
"p.lin"
"p.sig"
[10]
"polar2cart"
"setup.compaction.1D"
"setup.grid.1D"
[13]
"setup.grid.2D"
"setup.prop.1D"
"setup.prop.2D"
[16]
"tran.1D"
"tran.2D"
"tran.3D"
[19]
"tran.cylindrical"
"tran.polar"
"tran.spherical"
[22]
"tran.volume.1D"
>
> #=========================================
> # EXAMPLE: O2 and OC consumption in sediments =

> #=========================================
> #
> # This example uses only the volume fractions  in the reactive transport term.
> #
> #================#

> # Model formulation #

> #================#

> #
> # Monod consumption of oxygen (O2)
> #
> O2.model <- function (t = 0, O2, pars = NULL) {

+                    tran <- tran.1D(C = O2, C.up = C.ow.O2, D = D.grid,

+                                         v = v.grid, VF = por.grid, dx = grid)$dC

+                                         reac <- - R.O2*(O2/(Ks+O2))

+                                         return(list(dCdt = tran + reac))

+ }
>
> # First order consumption of organic carbon (OC)

>
> OC.model <- function (t = 0, OC, pars = NULL) {

+                     tran <- tran.1D(C = OC, flux.up = F.OC, D = Db.grid,

+                                          v = v.grid, VF = svf.grid, dx = grid)$dC

+                                          reac <- - k*OC

+ return(list(dCdt = tran + reac))

+ }
>
> #==================#

> # Parameter definition #

> #==================#

>
> # Parameter values

>
> F.OC       <- 25 #input flux organic carbon [micromol cm-2 yr-1]
> C.ow.O2 <- 0.25 # concentration O2 in overlying water
+                      [micromol cm-3]
> por          <- 0.8 # porosity
> D             <- 400 # diffusion coefficient O2 [cm2 yr-1]
> Db           <- 10 # mixing coefficient sediment [cm2 yr-1]
> v              <- 1 # advective velocity [cm yr-1]
> k              <- 1 # decay constant organic carbon [yr-1]
> R.O2       <- 10 # O2 consumption rate [micromol cm-3 yr-1]
> Ks            <- 0.005 # O2 consumption saturation constant
>
> # Grid definition

>

> L <- 10 # depth of sediment domain [cm]
> N <- 100 # number of grid layers
> grid <- setup.grid.1D(x.up = 0, L = L, N = N)

>
> # Volume fractions

>

> por.grid <- setup.prop.1D(value = por, grid = grid)
> svf.grid <- setup.prop.1D(value = (1-por), grid = grid)
> D.grid <- setup.prop.1D(value = D, grid = grid)
> Db.grid <- setup.prop.1D(value = Db, grid = grid)
> v.grid <- setup.prop.1D(value = v, grid = grid)
>
> #=============#

> # Model solution #

> #=============#

>

> # Initial conditions + simulation O2

>

> yini <- rep(0, length.out = N)
> O2 <- steady.1D(y = yini, func = O2.model, nspec = 1)

>

> # Initial conditions + simulation OC

>

> yini <- rep(0, length.out = N)
> OC <- steady.1D(y = yini, func = OC.model, nspec = 1)

>
> # Plotting output, using S3 plot method of package rootSolve"

>

> plot(O2, grid = grid$x.mid, xyswap = TRUE,
+         main = "O2 +concentration",

+         ylab = "depth [cm]", xlab = "", mfrow = c(1,2),
+         type = "p", pch = 16)

> # Outputting: Figure 40A.
>

> plot(OC, grid = grid$x.mid, xyswap = TRUE,
+         main = "C concentration",

+         ylab = "depth [cm]", xlab = "", mfrow = NULL)

> # Outputting: Figure 40B.
>
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Figure 40B
tran.1D {ReacTran}: general one-dimensional simultaneous biomolecular reaction with advective-diffusive mass transfer.

The R function tran.2D(), in the CRAN package ReacTran, provides an estimate of the time rate of mass transfer (i.e. the rate of change of a concentration owing to combined diffusion and advection) of a liquid medium (volume fraction constant and equal to one) or in a porous medium (volume fraction variable and lower than one) in a two-dimensional model domain.
The usage formula of this function tran.2D() is:
tran.2D (C, C.x.up = C[1,], C.x.down = C[nrow(C),],
C.y.up = C[,1], C.y.down = C[ ,ncol(C)],
flux.x.up = NULL, flux.x.down = NULL,
flux.y.up = NULL, flux.y.down = NULL,
a.bl.x.up = NULL, a.bl.x.down = NULL,
a.bl.y.up = NULL, a.bl.y.down = NULL,
D.grid = NULL, D.x = NULL, D.y = D.x,
v.grid = NULL, v.x = 0, v.y = 0,
AFDW.grid = NULL, AFDW.x = 1, AFDW.y = AFDW.x,
VF.grid = NULL, VF.x = 1, VF.y = VF.x,
A.grid = NULL, A.x = 1, A.y = 1,
grid = NULL, dx = NULL, dy = NULL,
full.check = FALSE, full.output = FALSE)
for which the arguments are
C
concentration, expressed per unit volume, defined at the centre of each grid cell; Nx*Ny matrix [M/L3].
C.x.up, C.x.down, C.y.up, C.y.down are, respectively, concentrations at
1.
upstream boundary in x-direction; vector of length Ny [M/L3];
2.
downstream boundary in x-direction; vector of length Ny [M/L3];
3.
upstream boundary in y-direction; vector of length Nx [M/L3]; and
4.
downstream boundary in y-direction; vector of length Nx [M/L3].
flux.x.up, flux.x.down, flux.y.up, flux.y.down, are, respectively, fluxes

1.
across the upstream boundary in x-direction, positive = INTO model domain; vector of length Ny [M/L2/T];

2.
across the downstream boundary in x-direction, positive = OUT of model domain; vector of length Ny [M/L2/T].

3.
across the downstream boundary in y-direction, positive = OUT of model domain; vector of length Nx [M/L2/T].

4.
across the downstream boundary in x-direction, positive = OUT of model domain; vector of length Ny [M/L2/T].
a.bl.x.up, a.bl.x.down, a.bl.y.up, a.bl.y.down, are, respectively, transfer coefficient across the upstream boundary layer in the
1.
x-direction; Flux=a.bl.x.up*(C.x.up-C[1,]). One value [L/T].
2.
x-direction; Flux=a.bl.x.down*(C[Nx,]-C.x.down). One value [L/T].
3.
y-direction; Flux=a.bl.y.up*(C.y.up-C[,1]). One value [L/T].

4.
y-direction; Flux=a.bl.y.down*(C[,Ny]-C.y.down). One value [L/T].
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D.grid
diffusion coefficient defined on all grid cell interfaces.
D.x
diffusion coefficient in x-direction, defined on grid cell interfaces.
D.y
diffusion coefficient in y-direction, defined on grid cell interfaces.
v.grid
advective velocity defined on all grid cell interfaces.
v.x
advective velocity in the x-direction, defined on grid cell interfaces.
v.y
advective velocity in the y-direction, defined on grid cell interfaces.
AFDW.grid
weight used in the finite difference scheme for advection in the x-direction, defined on grid cell interfaces; backward = 1, centered = 0.5, forward = 0; default is backward.
AFDW.x
weight used in the finite difference scheme for advection in the x-direction, defined on grid cell interfaces; backward = 1, centered = 0.5, forward = 0; default is backward.
AFDW.y
weight used in the finite difference scheme for advection in the y-direction, defined on grid cell interfaces; backward = 1, centered = 0.5, forward = 0; default is backward.
VF.grid
Volume fraction.
VF.x
Volume fraction at the grid cell interfaces in the x-direction.
VF.y
Volume fraction at the grid cell interfaces in the y-direction.
A.grid
Interface area.
A.x
Interface area defined at the grid cell interfaces in the x-direction.
A.y
Interface area defined at the grid cell interfaces in the y-direction.
dx, dy
distance between adjacent cell interfaces, respectively, in the x- and y-directions, (thickness of grid cells).
grid
discretization grid, a list containing at least elements dx, dx.aux, dy, dy.aux
full.check
logical flag enabling a full check of the consistency of the arguments (default =FALSE; TRUE slows down execution by 50 percent).

full.output
logical flag enabling a full return of the output (default = FALSE; TRUE slows down execution by 20 percent).
The boundary conditions (in the order of priority) are either

(1)
zero-gradient

(2)
fixed concentration

(3)
convective boundary layer

(4)
fixed flux
The zero gradient is the default, the fixed flux overrules all other.
The output is a list containing:
dC
the rate of change of the concentration C due to transport, defined in the centre of each grid cell, a Nx*Ny matrix. [M/L3/T].
C.x.up, C.x.down
concentrations, respectively, at the upstream, and downstream, interfaces in the x-direction.
C.y.up, C.y.down
concentrations, respectively, at the upstream, and downstream, interfaces in the y-direction
x.flux, y.flux
fluxes across the interfaces, respectively, in the x- and y-directions, of the grid cells.
flux.x.up, flux.x.down
fluxes across, respectively, the upstream and downstream, boundaries, respectively, in the x-direction.
flux.y.up, flux.y.down
fluxes across, respectively, the upstream and downstream boundaries in the y-direction,
Note:

It is much more efficient to use the grid input rather than vectors or single numbers.
The following example program (from the tran.2D illustrative vignette), in R code-segments, shows some applications of the CRAN package ReacTran:
> install.packages("ReacTran")
> require(ReacTran)
> library(ReacTran)
> ls("package:ReacTran")
>
> ##===========================================
> ## 2-D model, with spatially-variable diffusion coefficients
> ##===========================================
>

> N <- 51 # number of grid cells
> r <- 0.005 # consumption rate
> ini <- 1 # initial value at x = 0
> N2 <- ceiling(N/2)
> D.grid <- list()
> # Diffusion on x-interfaces
> D.grid$x.int <- matrix(nrow = N+1, ncol = N,
+                                     data = runif(N*(N+1)))
> # Diffusion on y-interfaces
> D.grid$y.int <- matrix(nrow = N, ncol = N+1,
+                                     data = runif(N*(N+1)))
> dx <- 10/N
> dy <- 10/N
> # The model equations
> Diff2Dc <- function (t, y, parms) {

+ CONC <- matrix(nrow = N, ncol = N, data = y)
+ dCONC <- tran.2D(CONC, dx = dx, dy = dy,
+                                  D.grid = D.grid)$dC + r * CONC
+ return (list(dCONC))
+ }
>
> # initial condition: 0 everywhere, except in central point
> y <- matrix(nrow = N, ncol = N, data = 0)
> y[N2, N2] <- ini # initial concentration in the central point...
>
> # solve for 8 time units
> times <- 0:8
> outc <- ode.2D (y = y, func = Diff2Dc, t = times,
+                             parms = NULL,

+                             dim = c(N, N), lrw = 160000)

>

> outtimes <- c(1, 3, 5, 7)
> image(outc, ask = FALSE, mfrow = c(2, 2),
+                    main = paste("time", outtimes),

+                legend = TRUE, add.contour = TRUE,
+                 subset = time %in% outtimes)
> # Outputting: Figure 41.
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Figure 41 tran.2D {ReacTran}: a two-dimensional simultaneous biomolecular reaction with advective-diffusive mass transfer.

The R function tran.3D(), in the CRAN package ReacTran, provides an estimate of the time rate of mass transfer (i.e. the rate of change of concentration owing to combined diffusion and advection) of a liquid medium (volume fraction constant and equal to one) or in a porous medium (volume fraction variable and lower than one) in a three-dimensional model domain.
The usage formula of this function tran.3D() is:
tran.3D (C, C.x.up = C[1,,], C.x.down = C[dim(C)[1],,],
C.y.up = C[ ,1, ], C.y.down=C[ ,dim(C)[2], ],
C.z.up = C[ , ,1], C.z.down=C[ , ,dim(C)[3]],
flux.x.up = NULL, flux.x.down = NULL,
flux.y.up = NULL, flux.y.down = NULL,
flux.z.up = NULL, flux.z.down = NULL,
a.bl.x.up = NULL, a.bl.x.down = NULL,
a.bl.y.up = NULL, a.bl.y.down = NULL,
a.bl.z.up = NULL, a.bl.z.down = NULL,
D.grid = NULL, D.x = NULL, D.y = D.x, D.z = D.x,
v.grid = NULL, v.x = 0, v.y = 0, v.z = 0,
AFDW.grid = NULL, AFDW.x = 1, AFDW.y = AFDW.x,
AFDW.z = AFDW.x,
VF.grid = NULL, VF.x = 1, VF.y = VF.x, VF.z = VF.x,
A.grid = NULL, A.x = 1, A.y = 1, A.z = 1,
grid = NULL, dx = NULL, dy = NULL, dz = NULL,
full.check = FALSE, full.output = FALSE)
for which the arguments are
C
concentration, expressed per unit volume, defined at the centre of each grid cell; Nx*Ny*Nz matrix [M/L3].
C.x.up, C.x.down, C.y.up, C.y.down, C.z.up, C.z.down are, respectively, concentrations at
1.
upstream boundary in x-direction; vector of length Ny [M/L3];
2.
downstream boundary in x-direction; vector of length Ny [M/L3];
3.
upstream boundary in y-direction; vector of length Nx [M/L3]; and
4.
downstream boundary in y-direction; vector of length Nx [M/L3].
5.
upstream boundary in z-direction; matrix of dimensions Nx*Ny [M/L3].
6.
downstream boundary in z-direction; matrix of dimensions Nx*Ny [M/L3].
flux.x.up, flux.x.down, flux.y.up, flux.y.down, flux.z.up, flux.z.down are, respectively, fluxes

1.
across the upstream boundary in x-direction, positive = INTO model domain; matrix of dimensions Ny*Nz [M/L2/T];

2.
across the downstream boundary in x-direction, positive = OUT of model domain; matrix of dimensions Ny*Nz [M/L2/T];

3.
across the upstream boundary in y-direction, positive = INTO model domain; matrix of dimensions Nx*Nz [M/L2/T];

4.
across the downstream boundary in y-direction, positive = OUT of model domain; matrix of dimensions Nx*Nz [M/L2/T];

5.
across the upstream boundary in z-direction, positive = INTO model domain; matrix of dimensions Nx*Ny [M/L2/T];

6.
across the downstream boundary in y-direction, positive = OUT of model domain; matrix of dimensions Nx*Ny [M/L2/T].
a.bl.x.up, a.bl.x.down, a.bl.y.up, a.bl.y.down, a.bl.z.up, a.bl.z.down, are, respectively, transfer coefficient across the upstream boundary layer in the

1.
x-direction; Flux=a.bl.x.up*(C.x.up-C[1,,]). One value [L/T],

2
x-direction; Flux=a.bl.x.down*(C.x.down-C[1,,]). One value [L/T],


3.
y-direction; Flux=a.bl.y.up*(C.y.up-C[1,,]). One value [L/T],

4.
y-direction; Flux=a.bl.y.down*(C.y.down-C[1,,]). One value [L/T],
5.
z-direction; Flux=a.bl.z.up*(C.z.up-C[1,,]). One value [L/T],

6.
z-direction; Flux=a.bl.z.down*(C.z.down-C[1,,]). One value [L/T],
D.grid
diffusion coefficient defined on all grid cell interfaces.
D.x, D.y, D.z
diffusion coefficient in, respectively, x-, y-, and z- direction, defined on grid cell interfaces.
v.grid
advective velocity defined on all grid cell interfaces.
v.x, v.y, v.z
advective velocity, respectively, in the x-, y-, z-direction, defined on grid cell interfaces.
AFDW.grid
weight used in the finite difference scheme for advection in the x-direction, defined on grid cell interfaces; backward = 1, centered = 0.5, forward = 0; default is backward.
AFDW.x, AFDW.y, AFDW.z
weight used in the finite difference scheme for advection, respectively, in the x-, y-, z-direction, defined on grid cell interfaces; backward = 1, centered = 0.5, forward = 0; default is backward.
VF.grid
Volume fraction.
VF.x, VF.y, VF.z
Volume fraction at the grid cell interfaces, respectively, in the x-, y-, z-direction.
A.grid
Interface area, a list.
A.x, A.y, A.z
Interface area defined at the grid cell interfaces, respectively, in the x-, y-, z-direction.
dx, dy, dz
distance between adjacent cell interfaces, respectively, in the x-, y-, z-direction (thickness of grid cells).
Grid
discretization grid, a list containing at least elements dx, dx.aux, dy, dy.aux, dz, dz.aux
full.check
logical flag enabling a full check of the consistency of the arguments (default =FALSE; TRUE slows down execution by 50 percent).
full.output
logical flag enabling a full return of the output (default = FALSE; TRUE slows down execution by 20 percent).
Notes:

 SHAPE  \* MERGEFORMAT 



Do not use this with too large grid.
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The boundary conditions, in the order of priority, are either
(1)
zero-gradient, or
(2)
fixed concentration, or
(3)
convective boundary layer, or
(4)
fixed flux.


[image: image121]
The zero gradient is the default, the fixed flux overrules all other.
The output is a list containing:
dC
the rate of change of the concentration C due to transport, defined in the centre of each grid cell, an array with dimension Nx*Ny*Nz [M/L3/T].
C.x.up, C.x.down, C.y.up, C.y.down, C.z.up, C.z.down concentration at the up/down-stream interface, respectively, in the x-, y-, z-direction. A matrix, respectively, of dimension Ny*Nz, Nx*Nz, Nx*Ny [M/L3]. Only when full.output = TRUE.
x.flux, y flux, z.flux flux across the interfaces, respectively, in the x-, y-, z-direction of the grid cells.
flux.x.up, flux.x.down, flux.y.up, flux.y.down, flux.z.up, flux.z.down flux across the up/down stream boundary, respectively in x-, y-, z- direction, positive = INTO/OUT of model domain.

The following example program (from the tran.3D illustrative vignette), in R code-segments, shows some applications of the CRAN package ReacTran:

> install.packages("ReacTran")

> require(ReacTran)

> library(ReacTran)

> ls("package:ReacTran")
> #========================================
> # Diffusion in 3-D; imposed boundary conditions  =

> #========================================
> diffusion3D <- function(t, Y, par) {

+ yy <- array(dim = c(n, n, n), data = Y) # vector to 3-D array
+ dY <- -r * yy                                             # consumption
+ BND <- matrix(nrow = n, ncol = n, 1)    # boundary concentration
+ dY <- dY + tran.3D(C = yy,

+           C.x.up = BND, C.y.up = BND, C.z.up = BND,

+       C.x.down = BND, C.y.down = BND, C.z.down = BND,

+           D.x = Dx, D.y = Dy, D.z = Dz,

+             dx = dx, dy = dy, dz = dz,
+           full.check = TRUE)$dC

+ return(list(dY))

+ }
> # parameters
> dy <- dx <- dz <- 1 # grid size
> Dy <- Dx <- Dz <- 1 # diffusion coeff, X- and Y-direction
> r    <- 0.025 # consumption rate
> n   <- 10
> y   <- array(dim = c(n, n, n), data = 10.)
>
> print(system.time(

+          ST3 <- steady.3D(y, func = diffusion3D, parms = NULL,

+          pos = TRUE, dimens = c(n, n, n),

+          lrw = 2000000, verbose = TRUE)

+ ))
[1] "Steady-state settings"
sparseType
 message

1
3D sparse
3-D jacobian,
calculated internally

[1] "estimated number of nonzero elements: 6910"

[1] "estimated number of function calls: 1001"

[1] "number of species: 1"

[1] "dimensions: 10 10 10"

[1] "cyclic boundaries: 0 0 0"

mean residual derivative 4.73661e-007[1] "precision at each steady state step"

[1] 1.105000e+01
4.736612e-07

[1] ""

[1] "--------------------"

[1] " Memory requirements"

[1] "--------------------"

par
mess
val

1
nnz
the number of nonzero elements
6400

2
ngp
the number of independent groups of state variables
12

3
nsp
the length of the work array actually required.
82366
user
system
elapsed
0.48
0.03
0.52
>
> y <- array(dim = c(n, n, n), data = ST3$y)
> filled.contour(y[ , ,n/2], color.palette = terrain.colors)
> # Outputting: Figure 42.
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Figure 42 tran.3D {ReacTran}: a three-dimensional simultaneous biomolecular reaction with advective-diffusive mass transfer.
>
> # a selection in the x-direction
> image(ST3, mfrow = c(2, 2), add.contour = TRUE,
+ legend = TRUE, dimselect = list(x = c(1, 4, 8, 10)))

> # Outputting: Figure 43.
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Figure 43 tran.3D {ReacTran}: a three-dimensional simultaneous biomolecular reaction with advective-diffusive mass transfer: results at four progressive instants of time.
Adventist Health Studies[29]
As an example of classical epidemiologic research, one may look to the Adventist Health Studies (AHS) which are long-term longitudinal studies exploring the links between lifestyle, diet, and disease among Seventh-day Adventists. More than 96,000 church members from the United States and Canada are participating in the current study, AHS-2, conducted by researchers at the Loma Linda University School of Public Health, City of Loma Linda, San Bernardino County, State of California, USA.
The AHS Programs: Studying Seventh-day Adventists
In preventive medicine and public health sciences, Seventh-day Adventists (Adventists) have been increasingly recognized as the objects of epidemiologic studies, both owing to their lifestyle tending to be far more homogeneous in many lifestyle choices and the fact that they are more heterogeneous in nutritional habits than the general population. The choice of selecting the Adventist populations may mitigate against certain lifestyle characteristics, such as heavy cigarette smoking, consumption of alcohol, and diets heavy in fats may confound or modify the effects of other factors, making it difficult to study members of the general population.
Within the Adventist population, these potentially distorting characteristics are largely absent, making other factors more easily observed. More importantly, the wide range of dietary habits, from strict vegetarianism to a normal American diet, greatly enhances the ability of investigators to correlate significant outcomes (such as the occurrences of cancers, heart diseases) with lifestyles and diet preferences. Below are summaries of each of the five major Adventist Health Studies conducted by researchers at Loma Linda University to date. Documentation of these studies, including links to the abstracts of each study’s scientific publications, may be obtained via the official AHS Internet website: www.AdventistHealthStudy.org
Adventist Mortality Study: 1958-1966
The first major study of Adventists, began in 1958, known as the Adventist Mortality Study, was a prospective study of 22,940 California Adventists. The study was conducted at the same time as the large American Cancer Society study of non-Adventists, and comparisons were made for many causes of death between the two populations.
Adventist Health Study-1 (AHS-1): 1974-1988
The second major study was designed to determine which components of the Adventist lifestyle give protection against disease. Over the course of the study, several questionnaires were mailed to 34,198 California Adventists. In the beginning, AHS-1 was primarily a cancer investigation. In 1981, a cardiovascular component was added.
Adventist Health Air Pollution Study (AHSMOG): 1976-Present
The AHSMOG Study is a substudy consisting of 6,338 California Adventists who were members of the parent AHS-1. It is thought that this population may provide a unique opportunity for investigating the health effects of long-term exposure to ambient air pollutants with very little confounding (distortion) by active tobacco exposure. Since 1977, the cohort has been followed and monitored for newly diagnosed malignant neoplasms, coronary heart disease, and all-cause mortality.
Adventist Health Study-2 (AHS-2): 2002-Present
With 96,000 Adventist participants in the United States and Canada, AHS-2 is one of the largest and most comprehensive studies of diet and cancer in the world. It is also one of the largest dietary studies of Black/African Americans and is expected to help answer why this group has a disproportionately increased amount of cancers and heart diseases.
Adventist Religion & Health Study (ARHS): 2006-Present
ARHS is a substudy of AHS-2 consisting of 11,000 Adventist Americans who are members of the parent AHS-2. It aims to understand what specific aspects of religion, life stressors, and other health behaviors account for better or worse health and trace some of the biopsychosocial pathways to health.
Adventist Health Study-2: Early Findings
Over 96,000 Adventists living in the United States and Canada
Questionnaires
Every study member is requested to fill out a 50-page diet and lifestyle questionnaire at the start of the study. Thereafter, every 2 years, these participants are again requested to fill out hospital history forms, listing any hospitalizations and diagnoses of cancers, stroke, heart attack, and diabetes during the previous 2 years.
Profile of Study Members
The study is made up of over 96,000 Adventists ages 30 to 112 from all 50 United States, as well as Canada. Enrollment occurred between 2001 and 2007. About 64% were members of the Adventist church by the age of 15 years. The study members are 65.1% female, with a mean age of 60.2 at enrollment. Additionally, 65.3% of the study members are non-Hispanic Caucasians and 26.9% of our study members are Black/African American. The study includes small numbers of other ethnic minorities. Only 1.1% of the study members report being current smokers and 6.6% report current alcohol users.
Dietary Status of Study Members:
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8% are vegan (No meat, fish, poultry, dairy products, or eggs.
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28% are lacto-ovo vegetarian (Consume dairy products, and/or eggs, but no meat, fish or poultry).
 SHAPE  \* MERGEFORMAT 



10% are pesco-vegetarian (Consume fish, dairy products, and/or eggs but no meat or poultry)
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6% are semi-vegetarian (Eat meat, poultry, and fish less than once per week)
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48% are non-vegetarian (Eat meat, poultry, fish, dairy products, and eggs more than once a week)
From the AHS-2 webpage, one may find the following Internet links to summaries of relevant findings:
Life Style, Dies, and Disease
All levels of cholesterol, diabetes, high blood pressure, and the metabolic syndromes had the same trend – the closer one lives as a vegetarian, the lower the health risk in these areas: http://www.llu.edu/public-health/health/lifestyle_disease.page
Lifestyle and Wrist Fractures
The data indicate that women who reported fractures were more likely to be older, to have a history of fractures, to sustain low or no vigorous physical activity, and to have never used hormone-adjustment medications. http://www.llu.edu/public-health/health/lifestyle_wrist_fractures.page
Minority Populations: Black/African Americans
AHS-2 has provided a current overview of the health of its Black/African American study members, as well as its data on scientific research within the Black/African American community: http://www.llu.edu/public-health/health/minority_populations.page
Adventist Religion & Health Study (ARHS, a substudy of AHS-2)
ARHS aims to understand specific aspects of religion which may account for better or worse health in a nationwide cohort of Adventists: http://www.llu.edu/public-health/health/adventist-religion-health.page
Vegetarians and Vitamin D
A vegetarian diet was not associated with lower levels of vitamin D. Other factors, such as amount and intensity of sun exposure had a greater influence on vitamin D levels in blood than diet: http://www.llu.edu/public-health/health/adventist-religion-health.page
Some Recent Gallop Pool Statistics Concerning Adventists and Their Diets
Polls Report that Five Percent of Americans are Vegetarians, 41 Percent of Adventists in the U.S.

[image: image129.png]
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By AT (“Adventist To-day”)News Team

http://www.atoday.org/article/1321/news/august-headlines/polls-report-that-five-percent-of-americans-are-vegetarians-41-percent-of-adventists-in-the-u-s
A new Gallup Poll conducted last month finds that five percent of Americans say they are vegetarians. This percentage has remained stable for more than a decade, Gallup reports.
The Seventh-day Adventist Church has been promoting a vegetarian diet to improve health for about 125 years. Repeated studies by a number of different research teams have show definite health advantages. Yet, internal surveys indicate that only 41 percent of American Adventists consistently follow a vegetarian diet. This is eight times the proportion among the general public in the United States and studies have shown that Adventists generally have a longer lifespan than other Americans.
Most Adventist congregations across the country follow the practice of a vegetarian menu for church dinners. About one in five Adventist local churches offer a vegetarian cooking class for the community about each year. These classes also help new converts to learn to prepare vegetarian meals for church potlucks and social events.
There is increasing interest in “vegan” diet, vegetarians who also do not consume eggs or dairy. This year the Gallup Poll asked specifically about vegans and found that only two percent of Americans claim to follow a vegan regime.
Internal surveys among Adventists reveal that 16 percent never eat cheese, 25 percent never eat eggs, and 38% never use or drink milk of any kind. Overall, about one in eight American Adventists can be labeled vegans. This is six or seven times the percentage among the general public.
The survey data do not include trends because earlier surveys have not asked about vegan practices. This means it is impossible to know if the percentage of vegans is growing, either in the denomination or in the general public.
Some Typical Examples of the Epidemiologic Work in the AHS Program
Three examples of the AHS research program are selected for illustration:
1.
Some preliminary computed biostatistical work, using R, in the area of Missing Data Analysis – see section “Missing Data Analysis”.
2.
A typical data processing of an AHS dataframe, using R, illustrating the vastness of the datasets in this research.
(Acknowledgment: The computational results from the AHS-2 research program were preliminary trial calculations made available by the team’s biostatistician Jin Fan.)
3.
The third example is a published paper entitled “Vegetarian Dietary Patterns are Associated With a Lower Risk of Metabolic Syndrome”, May 2011, by the principal investigator of AHS-2, Gary E. Fraser, and some of his associates: the biostatistical package SPSS was used.

This example shows a typical data processing computation for an AHS-2 dataframe, using R, illustrating the vastness of the datasets in this research.
For this R computation, four files are involved:
File I: The Program in R
File II: The Input Data File (APPENDIX 28-A)
File III: The Output Result File 1 of 2 Files (APPENDIX 28-B)
File IV: The Output Result File 2 of 2 Files (APPENDIX 28-C)
File I: The Program in R
vegeimpute<-function(data,varlist,fitter,model,n.impute=1,type='pmm',match='closest',x=TRUE,list.out=TRUE)

{

n1<-
aregImpute(varlist,x=TRUE,match='closest',n.impute=1,nk=0,data=data)

c1<-data

imputed1 <- impute.transcan(n1, imputation=1, data=data, list.out=TRUE,pr=FALSE, check=FALSE)

c1[names(imputed1)] <- imputed1

attach(c1)

fish<-fish1+fish2

meat<-redmeat+poultry1+poultry2

dairy<-egg+dairy1+dairy2

vegetarian<-vector(length=length(meat))
for (i in 1:length(meat)) { if ((meat[i]<0.033 & fish[i] < 0.033 & dairy[i] < 0.033)|(meat[i]<0.033 & fish[i] < 0.033 & dairy[i] >=0.033)) {vegetarian[i]=1} else { vegetarian[i]=0} }

semivege <-vector(length=length(meat))
for (i in 1:length(meat)) { if ((meat[i]<0.033 & fish[i] >=0.033) | (meat[i]>=0.033 & (meat[i]+fish[i])>=0.033 & (meat[i]+fish[i])<=0.143)) {semivege [i]=1} else { semivege [i]=0 } }

nonvege <-vector(length=length(meat))
for (i in 1:length(meat)) { if (meat[i]>=0.033 & (meat[i]+fish[i])>0.143) {nonvege[i]=1} else { nonvege[i]=0} }

v1<-data.frame(qid,vegetarian,semivege,nonvege)

attach(v1)

m1<-fitter(model, family=binomial(logit), data=c1)
n2<-
aregImpute(varlist,x=TRUE,match='closest',n.impute=1,nk=0,data=data)

c2<-data

imputed2 <- impute.transcan(n2, imputation=1, data=data, list.out=TRUE,pr=FALSE, check=FALSE)

c2[names(imputed2)] <- imputed2

attach(c2)

fish<-fish1+fish2

meat<-redmeat+poultry1+poultry2

dairy<-egg+dairy1+dairy2

vegetarian<-vector(length=length(meat))
for (i in 1:length(meat)) { if ((meat[i]<0.033 & fish[i] < 0.033 & dairy[i] < 0.033)|(meat[i]<0.033 & fish[i] < 0.033 & dairy[i] >=0.033)) {vegetarian[i]=1} else { vegetarian[i]=0} }

semivege <-vector(length=length(meat))
for (i in 1:length(meat)) { if ((meat[i]<0.033 & fish[i] >=0.033) | (meat[i]>=0.033 & (meat[i]+fish[i])>=0.033 & (meat[i]+fish[i])<=0.143)) {semivege [i]=1} else { semivege [i]=0 } }

nonvege <-vector(length=length(meat))
for (i in 1:length(meat)) { if (meat[i]>=0.033 & (meat[i]+fish[i])>0.143) {nonvege[i]=1} else { nonvege[i]=0} }

v2<-data.frame(qid,vegetarian,semivege,nonvege)

attach(v2)

m2<-fitter(model,family=binomial(logit), data=c2)
n3<-
aregImpute(varlist,x=TRUE,match='closest',n.impute=1,nk=0,data=data)

c3<-data

imputed3 <- impute.transcan(n3, imputation=1, data=data, list.out=TRUE,pr=FALSE, check=FALSE)

c3[names(imputed3)] <- imputed3

attach(c3)

fish<-fish1+fish2

meat<-redmeat+poultry1+poultry2

dairy<-egg+dairy1+dairy2

vegetarian<-vector(length=length(meat))
for (i in 1:length(meat)) { if ((meat[i]<0.033 & fish[i] < 0.033 & dairy[i] < 0.033)|(meat[i]<0.033 & fish[i] < 0.033 & dairy[i] >=0.033)) {vegetarian[i]=1} else { vegetarian[i]=0} }

semivege <-vector(length=length(meat))
for (i in 1:length(meat)) { if ((meat[i]<0.033 & fish[i] >=0.033) | (meat[i]>=0.033 & (meat[i]+fish[i])>=0.033 & (meat[i]+fish[i])<=0.143)) {semivege [i]=1} else { semivege [i]=0 } }

nonvege <-vector(length=length(meat))
for (i in 1:length(meat)) { if (meat[i]>=0.033 & (meat[i]+fish[i])>0.143) {nonvege[i]=1} else { nonvege[i]=0} }
v3<-data.frame(qid,vegetarian,semivege,nonvege)

attach(v3)

m3<-fitter(model,family=binomial(logit), data=c3)
n4<-
aregImpute(varlist,x=TRUE,match='closest',n.impute=1,nk=0,data=data)

c4<-data

imputed4 <- impute.transcan(n4, imputation=1, data=data, list.out=TRUE,pr=FALSE, check=FALSE)

c4[names(imputed4)] <- imputed4

attach(c4)

fish<-fish1+fish2

meat<-redmeat+poultry1+poultry2

dairy<-egg+dairy1+dairy2

vegetarian<-vector(length=length(meat))
for (i in 1:length(meat)) { if ((meat[i]<0.033 & fish[i] < 0.033 & dairy[i] < 0.033)|(meat[i]<0.033 & fish[i] < 0.033 & dairy[i] >=0.033)) {vegetarian[i]=1} else { vegetarian[i]=0} }

semivege <-vector(length=length(meat))
for (i in 1:length(meat)) { if ((meat[i]<0.033 & fish[i] >=0.033) | (meat[i]>=0.033 & (meat[i]+fish[i])>=0.033 & (meat[i]+fish[i])<=0.143)) {semivege [i]=1} else { semivege [i]=0 } }

nonvege <-vector(length=length(meat))
for (i in 1:length(meat)) { if (meat[i]>=0.033 & (meat[i]+fish[i])>0.143) {nonvege[i]=1} else { nonvege[i]=0} }

v4<-data.frame(qid,vegetarian,semivege,nonvege)

attach(v4)

m4<-fitter(model,family=binomial(logit), data=c4)
n5<-
aregImpute(varlist,x=TRUE,match='closest',n.impute=1,nk=0,data=data)

c5<-data

imputed5 <- impute.transcan(n5, imputation=1, data=data, list.out=TRUE,pr=FALSE, check=FALSE)

c5[names(imputed5)] <- imputed5

attach(c5)

fish<-fish1+fish2

meat<-redmeat+poultry1+poultry2

dairy<-egg+dairy1+dairy2

vegetarian<-vector(length=length(meat))
for (i in 1:length(meat)) { if ((meat[i]<0.033 & fish[i] < 0.033 & dairy[i] < 0.033)|(meat[i]<0.033 & fish[i] < 0.033 & dairy[i] >=0.033)) {vegetarian[i]=1} else { vegetarian[i]=0} }

semivege <-vector(length=length(meat))
for (i in 1:length(meat)) { if ((meat[i]<0.033 & fish[i] >=0.033) | (meat[i]>=0.033 & (meat[i]+fish[i])>=0.033 & (meat[i]+fish[i])<=0.143)) {semivege [i]=1} else { semivege [i]=0 } }

nonvege <-vector(length=length(meat))
for (i in 1:length(meat)) { if (meat[i]>=0.033 & (meat[i]+fish[i])>0.143) {nonvege[i]=1} else { nonvege[i]=0} }

v5<-data.frame(qid,vegetarian,semivege,nonvege)

attach(v5)

m5<-fitter(model,family=binomial(logit), data=c5)
beta1<-
cbind(c(coef(m1)),c(coef(m2)),c(coef(m3)),c(coef(m4)),c(coef(m5)))

beta<-beta1[2:(length(beta1)/5),]

meancoef<-rowMeans(beta)

bivar<-diag(var(t(beta)))

var1<-diag(vcov(m1))[2:(length(beta)/5+1)]

var2<-diag(vcov(m2))[2:(length(beta)/5+1)]

var3<-diag(vcov(m3))[2:(length(beta)/5+1)]

var4<-diag(vcov(m4))[2:(length(beta)/5+1)]

var5<-diag(vcov(m5))[2:(length(beta)/5+1)]

var<-cbind(var1,var2,var3,var4,var5)

sevar<-sqrt(var[1:(length(beta)/5),])

varimp<-var[1:(length(beta)/5),]

wivar<-rowMeans(varimp)

tvar<-wivar+1.2*bivar

se<-sqrt(tvar)

combeta<- cbind(beta,meancoef)

comse <- cbind(sevar,se)
v<-4*(1+wivar/(1.2*bivar))^2

t<-meancoef/se

p<-2*pt(-abs(t), v)
lowerbond<-meancoef-(abs(qt(0.025, v)))*se

upperbond<-meancoef+(abs(qt(0.025, v)))*se

ci<-cbind(lowerbond, upperbond)
print(comse)

print(t)

print(combeta)

print(ci)

print(p)
}
File II: The Input Data File - 1398 Case-Subjects

Qid
Age
Sex
Smoking
Alcohol
Income
MS-Glucose
MS-BP
MS_Triglycerides
MS_HDL

3770
52
0
0
0
4
1

3775
63
0
0
1
1
0
1
1
0

3786
59
0
0
0
3
1
0
0
1

3793
61
0
0
1
3
1
0
1
1

3803
76
0
0
0
0

0
1
1
………………………………………………………………………………..……………………………………………………………....

8630857
57
1
0
1
3
1
1
1
0
File III: The Output Results File 1 of 2 Files - 147 Case-Subjects

Step
crude
corrected
Food


correlation
correlation
Position

1
0.459479
0.551234
1

2
0.488684
0.586270
152

3
0.500438
0.600372
38

4
0.507704
0.609089
107

5
0.508505
0.61005
82

…………………………………………………………………………...

147
0.520598
0.624557
101
File IV: The Output Results File 2 of 2 Files - 147 Case-Subjects

step
crude
corrected
Food


correlation
correlation
Position

1
0.440273
0.518306
1

2
0.475717
0.560032
140

3
0.497148
0.58526
101

4
0.506793
0.596614
35

5
0.514974
0.606246
160

…………………………………………………………………………...

147
0.553834
0.651994
86

This example shows some preliminary computed biostatistical results, using R, in the area of Missing Data Analysis (see discussions in the section “Missing Data Analysis”) for AHS-2 datasets .
Among the CRAN collection of packages in R, the following two programs were used:
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mice (multivariate imputations by chained equations)
The function mice() is listed in the CRAN package mice.

This approach consists of multiple imputation using Fully Conditional Specification (FCS) implemented by the MICE algorithm. Each variable may have its own imputation model. Built-in imputation models are provided for continuous data, binary data for logistic regression, unordered categorical data, and ordered categorical data. mice can also impute continuous two-level data. Passive imputation can be used to maintain consistency between variables. Various diagnostic plots are available to inspect the quality of the imputations.
 SHAPE  \* MERGEFORMAT 



aregImpute (additive regression Impute)

The function aregImpute() is listed in the CRAN package Hmisc.
The aregImpute algorithm is used for handling missing data in support of:
(i)
complete case analyses,
(ii)
single imputation within trials, and
(iii)
multiple imputations within trials.
The Adventist Health Study (AHS)
 SHAPE  \* MERGEFORMAT 



Who is conducting and supporting the study?
Principal Investigator Professor Gary E. Fraser, MBChB(MD), PhD, MPH, and Biostatistician Ms Jing Fan, MS, with a team of researchers from the School of Public Health, Loma Linda University, are conducting the study.
 SHAPE  \* MERGEFORMAT 



Oakwood College, Huntsville, Alabama, is recognized as an important partner in the study and was particularly involved in the recruitment of black participants and the dissemination of information.
 SHAPE  \* MERGEFORMAT 



The North American Division of Seventh-day Adventists and Union and Local Conference administrations enthusiastically support and endorse the study.
 SHAPE  \* MERGEFORMAT 



Seventh-day Adventist churches in the United States and Canada were actively involved in promotion of the study and the recruitment of participants, and are recognized as indispensable partners in this project.
 SHAPE  \* MERGEFORMAT 



The study received funding from the National Institutes of Health (NIH), 2001 to 2008, from Loma Linda University, 2009-2012, from the National Cancer Institute – a division within the NIH, 2012 onwards, etc.
 SHAPE  \* MERGEFORMAT 



A comparison of these two R codes: mice() and aregImpute(), for biostatistical computations of some critical preliminary AHS-2 research results are shown in Table 1 and Table 2 below:
	Table 8.1 Mean of imputed food variables by two methods: mice and aregImpute based on AHS-2 calibration study subjects (N=921)

	Dietary Pattern
	MI (mice)
	Hmisc (aregImpute)

	Vegan
	90 (9.77%)
	89 (9.66%)

	Lacto-ovo
	253 (27.47%)
	254 (27.58%)

	Pesco (+fish, Lacto-ovo?)
	42 (4.56%)
	42 (4.56%)

	Semi-vegetarian
	107 (11.62%)
	106 (11.51%)

	Nonvegetarian
	429 (46.58%)
	430 (46.69%)

	The table describes the distribution of calibration subjects with different vegetarian status. The tabulated values are the number of persons in each dietary category.

Professor Gary E. Fraser and biostatistician Ms. Jing Fan (2010, personal communication.

	Table 8.2 Dietary patterns by two methods: mice and aregImpute based on AHS-2 calibration study subjects (N=921)

	Imputed Food Variables
	MI (mice)
	Hmisc (aregImpute)

	Meat (red meat + poultry)
	0.15 (±0.25)
	0.15 ((±0.26)

	Fish
	0.27 (±0.45)
	0.27 (±0.45)

	Dairy (egg + dairy products)
	1.31 (±1.40)
	1.31 (±1.39)

	The table shows the average of food (meat, fish, and dairy products) consumed by all calibration subjects (N=921). These are imputed values: the unit is frequency/day.

Professor Gary E. Fraser and biostatistician Ms. Jing Fan (2010, personal communication.



The following paper is an example of one of the research reports that the AHS-2 team has published and continue to publish:
Rizzo, N. S., Sabaté, J., Jaceldo-Siegl, K., and Fraser, G. E. (2011). Vegetarian dietary patterns are associated with a lower risk of metabolic syndrome. Diabetes Care, 34(5), 1225–1227, May 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114510/figure/F1/
ABSTRACT

OBJECTIVE The study objective was to compare dietary patterns in their relationship with metabolic risk factors (MRFs) and the metabolic syndrome (MetS).
RESEARCH DESIGN AND METHODS Cross-sectional analysis of 773 subjects (mean age 60 years) from the Adventist Health Study 2 was performed. Dietary pattern was derived from a food frequency questionnaire and classified as vegetarian (35%), semi-vegetarian (16%), and nonvegetarian (49%). ANCOVA was used to determine associations between dietary pattern and MRFs (HDL, triglycerides, glucose, blood pressure, and waist circumference) while controlling for relevant cofactors. Logistic regression was used in calculating odds ratios (ORs) for MetS.
RESULTS A vegetarian dietary pattern was associated with significantly lower means for all MRFs except HDL (P for trend < 0.001 for those factors) and a lower risk of having MetS (OR 0.44, 95% CI 0.30–0.64, P < 0.001) when compared with a nonvegetarian dietary pattern.
CONCLUSION A vegetarian dietary pattern is associated with a more favorable profile of MRFs and a lower risk of MetS. The relationship persists after adjusting for lifestyle and demographic factors.
The metabolic syndrome (MetS) is a cluster of disorders that are associated with a heightened risk of diabetes and cardiovascular disease (1). Previous studies have reported associations between major dietary patterns and MetS (2). However, no agreement is found as to which dietary patterns would confer the lowest risk of MetS (2). It is thus the aim of this report to analyze the relationship between dietary patterns defined by degree of animal food intake and the prevalence of MetS.

RESEARCH DESIGN AND METHODS

This report includes subjects from a substudy of the Adventist Health Study 2. In brief, subjects (n = 1,011) with a mean age of 60 years (range 30–94 years) were randomly selected from the 96,000 enrollees of the Adventist Health Study 2. Subjects were required to attend a clinic during which weight and height were measured and fasting blood samples were collected by trained staff. The methods have been described by Chan et al. (3) and Jaceldo-Siegl et al. (4). Height was measured to the nearest 1/4 inch (0.64 cm) with the subject standing erect and barefoot using a Seca 214 Portable Height Rod (Seca Corp., Hamburg, Germany), and weight was measured to the nearest 0.1 kg with the subject wearing light clothing without shoes and socks using the Tanita BF-350 (Tanita UK Ltd., Middlesex, U.K.). Waist circumference was measured with an anthropometric tape 1 inch above the navel. The measurements were repeated three times, and the mean of the values was used for further calculations. BMI was calculated as weight/height squared (kilograms/meters squared). Clinic staff obtained fasting blood glucose, cholesterol, LDL-cholesterol, HDL-cholesterol, and triglyceride concentrations via finger stick using the Cholestech LDX System (Cholestech, Hayward, CA) (5). Three blood pressure measurements were obtained using the Omron Automatic Digital Blood Pressure Monitor HEM-747IC (Omron Healthcare, Inc., Vernon Hills, IL) (6), and the mean value was used for analysis. The Adult Treatment Panel III 2001 (7) definition for identifying the MetS was used with cutoff levels for impaired fasting plasma glucose set at ≥100 mg/dL, as suggested by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus in 2003 (8). Subjects taking antihypertensive (27%) or diabetes (8%) medication were considered to indicate the presence of the respective risk factor.

Dietary intake was obtained using a quantitative, self-administered food frequency questionnaire. Validity and detailed description of the computation of the dietary data were previously reported (4,9). For all meat, poultry, fish, and dairy validity, correlations were >0.80 and 0.58 for egg intake (10).

Type of diet was categorized by defining vegetarians as subjects who reported consuming meat, poultry, or fish <1 time/month. Semi-vegetarians were defined as consuming fish at any frequency but consuming other meats <1 time/month or total meat (with red meat and poultry ≥1 time/month and <1 time/week). Non-vegetarians were defined as consuming red meat or poultry ≥1 time/month and the total of all meats ≥1 time/week. A modification of the Blair Seven-Day Physical Activity Recall (11) was used to obtain measures of physical activity. Subjects were interviewed by telephone and asked to recall time spent in light, moderate, hard, and very hard activities during the previous 7 days. Alcohol intake was defined as consumption of any amount or none during the previous 12 months. Tobacco use was defined as ever smoking any amount of tobacco or none.

Statistical analysis

Subjects with a complete set of clinical and nondietary covariate data were included in the analysis (n = 773). Imputation of missing dietary data used guided multiple imputation (12). In the descriptive analyses, differences in covariate values by type of dietary pattern (vegetarian, semi-vegetarian, nonvegetarian) were assessed by ANOVA (ANALYSIS OF VARIANCE: a collection of statistical models, and their associated procedures, in which the observed variance in a particular variable is partitioned into components attributable to different sources of variation) and by χ2 tests for categoric data.

ANCOVA (ANALYSIS OF COVARIANCE: a general linear model which blends ANOVA and regression.) was used in comparing metabolic risk factors (MRFs) (HDL, triglycerides, glucose, blood pressure, waist circumference) and BMI stratified by types of dietary patterns. Values for triglycerides and glucose were logarithmically transformed for analysis because of skewness, and exponentiated values are shown. Logistic regression analysis was used to compute multivariable-adjusted odds ratios (ORs) and 95% CIs for the association of dietary patterns with MetS. Non-vegetarian dietary pattern was used as the reference group. Adjustments were made for age, sex, ethnicity, smoking, alcohol intake, physical activity, and dietary energy intake in the ANCOVA and logistic regression analysis.

Analysis was carried out with IBM SPSS Statistics18.01 (SPSS Inc., an IBM Company, Chicago, IL) and with R 2.10.1: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria). The type I error rate was set at 0.05.

RESULTS

Vegetarians and semi-vegetarians were on average 3 years older than non-vegetarians. Height was not significantly different among the three dietary patterns. BMI was lowest in vegetarians (25.7 kg/m2), intermediate in semi-vegetarians (27.6 kg/m2), and highest in nonvegetarians (29.9 kg/m2).

The dietary patterns had marked differences in the prevalence of MRFs that were over the risk threshold: vegetarians had 12% with three factors, 8% with four factors, and 3% with five factors. Semi-vegetarians had 19% with three factors, 10% with four factors, and 2% with five factors. Nonvegetarians had 19% with three factors, 13% with four factors, and 5% with five factors. After adjusting for age, sex, ethnicity, smoking, alcohol intake, physical activity, and dietary energy intake, the results showed that triglycerides, glucose, blood pressure levels, waist circumference, and BMI were significantly lower (P < 0.05) in vegetarians than in non-vegetarians: Figure 44. Semi-vegetarians had significantly lower waist circumference and BMI (P < 0.001) than nonvegetarians. Additional adjustment of these variables for BMI showed that the results remained significantly lower in vegetarians for glucose and diastolic blood pressure (P < 0.05).
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Figure 44 AHS-2: data showing that triglycerides, glucose, blood pressure levels, waist circumference, and BMI were significantly lower (P < 0.05) in vegetarians than in nonvegetarians.
Dietary pattern and MRFs. Mean-centered values are shown with whiskers representing SE. ANCOVA was used in comparing risk factors stratified by dietary patterns. P values represent contrasts with nonvegetarian dietary pattern, which is the group of reference. 
The MetS was highest in nonvegetarians (39.7%), intermediate in semi-vegetarians (37.6%), and lowest in vegetarians (25.2%) (P for trend < 0.001). Significant differences remained after adjustments for sex, ethnicity, smoking, alcohol intake, physical activity, and dietary energy intake. Those adhering to a vegetarian dietary pattern had an OR for MetS of 0.44 (95% CI 0.30–0.64, P < 0.001) when compared with nonvegetarians.

CONCLUSIONS

This report showed that a vegetarian dietary pattern is associated with a more favorable profile of MRFs and a lower risk of MetS. This favorable relationship persisted and was considerably strengthened when adjusting for possible confounding factors. Our results thus confirm and build on previous studies on vegetarian diets and metabolic risk (13–16), and suggest that a vegetarian dietary pattern can play a favorable role in lowering the risk of MetS.
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Review Questions for Section “Biostatistical Challenges and Resolutions”
____________________________

1.
Environmental epidemiology:

(a)
What is environmental epidemiology?

(b)
Give an example of an application of biostatistics in environmental epidemiology – including a typical program using R.
2. Applied statistical genetics:
(a)
What is genetic epidemiology?

(b)
Give an example of an application of biostatistics in genetic epidemiology – including a typical program using R.
3.
Modeling using spline analysis:
(a)
What is spline analysis?

(b)
Give an example of an application of spline analysis in biostatistics for epidemiology – including a typical program using R.
4.
Missing data analysis:

(a)
What is missing data analysis?

(b)
Give an example of missing data analysis in biostatistics for epidemiology – including a typical program using R.
5.
Bioconductor case studies:

(a)
What are Bioconductor case studies?

(b)
Give an example of the application of Bioconductor case studies in biostatistics and epidemiology – including a typical program using R.
6.
Biomolecular reaction and transport:

(a)
What is biomolecular reaction and transport?

(b)
Give an example of the application of biomolecular reaction and transport in epidemiology – including a typical program using R.
7.
Adventist Health Studies (AHS):
(a)
What are the AHS?

(b)
Give an example of an application of biostatistics in AHS– including a typical program using R.
8.
Suggest other areas in Epidemiology, Public Health Sciences, and Preventive Medicine in which Biostatistics is critically involved.
9.
Suggest other areas in Mathematics and Computational Sciences which have important contributions to Biostatistics, Epidemiology, Public Health Sciences, and Preventive Medicine.
10.
Suggest subject areas and examples outside of science and technology that have important bearings on investigations in Epidemiology.
Exercises for Section “Biostatistical Challenges and Resolutions”
____________________________

1.
Environmental epidemiology:

The CRAN package gamair[30] contains the dataset cairo, a record of the average daily air temperatures (in degrees Fahrenheit) for over 10 years, starting from 1/1/1995, for the city of Cairo, the capital of Egypt. It is a data frame with 6 columns and 3780 rows. The columns are:
month
month of year from 1 to 12.
day.of.month
day of month, from 1 to 31.
year
Year, starting 1995.
temp
Average temperature (degrees Fahrenheit).
day.of.year
Day of year from 1 to 366.
time
Number of days since 1st Jan 1995.
Source: http://www.engr.udayton.edu/weather/citylistWorld.htm
The usage formula is: data(cairo)

which is a data frame with 6 columns and 3780 rows. The columns are:

month
month of year from 1 to 12.

day.of.month
day of month, from 1 to 31.

year
Year, starting 1995.
Temp
Average temperature (degrees Fahrenheit).
day.of.year
Day of year from 1 to 366.

Time
Number of days since 1st Jan 1995.
The following R code-segments provide a graphical display of the daily temperature profile of the city of Cairo for the 10-year span of time: 1995-2005,

>

> install.packages("gamair")

> library(gamair)

> require(gamair)

> data(cairo)

> attach(cairo)

> cairo # Outputting (abbreviated):

month
day.of.month
year
temp
day.of.year
time

1
1
1
1995
59.2
1
1

2
1
2
1995
57.5
2
2

3
1
3
1995
57.4
3
3
………………………………………………………………………………………………………
3794
5
21
2005
76.9
141
3794

> with(cairo,plot(time,temp,type="l")) # Outputting: Figure 45.
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Figure 45 The daily temperature profile for the city of Cairo, 1995–2005.
With respect to the about program in R displaying the daily temperature profile for the City of Cairo, 1995-2005:

(a)
What are the functions of the above R code-segment used in displaying the dataset cairo in the CRAN package gamair?.

(b)
Re-run the above code-segment in an R environment, for the years 1995-2000.
(c)
Compute the mean annual temperature for each of the 10 years between 1995 and 2005. Describe the result, noting any trends. Rising? Falling?
2.
Applied statistical genetics:
The CRAN package gap (genetic analysis package), published on 3/15/2012, is an integrated package for genetic data analysis of population and family data. It contains functions for

(a)
sample size calculations of both population-based and family-based designs,

(b)
probability of familial disease aggregation, kinship calculation,
(c)
statistics in linkage analysis, and
(d)
association analysis involving one or more genetic markers including haplotype analysis with or without environmental covariates.

As an example, the function ab() in gap is available to test for, or obtain biostatistical power of, mediating effect based on estimates of two regression coefficients and their standard errors.
For binary outcome or mediator, one should use log-odds ratio and its standard error.

The usage formula for the function ab() is

ab(type, n=25000, a=0.15, sa=0.01, b=log(1.19), sb=0.01,
alpha=0.05, fold=1)

for which the arguments are:

type
tring option: "test", "power"

n
default sample size to be used for power calculation

a
regression coefficient from independent variable to mediator
sa
SE(a)

b
regression coefficient from mediator variable to outcome
sb
SE(b)
alpha
size of significance test for power calculation
fold
fold change for power calculation, as appropriate for a range of sample sizes
The returned value are z-test and significance level for significant testing or sample size/power for a given fold change of the default sample size.
The following example in R demonstrates the application of the function ab():

> install.packages("gap")

> library(gap)

[1] "R/gap is loaded"

> require(gap)

> ls("package:gap") # Outputting: (Abbreviated)
[1]
"a2g"
"ab"
"aldh2"
[4]
"allele.recode"
"apoeapoc"
"asplot"
[7]
"b2r"
"BFDP"
"bt"
……………………………………………………………….
[112]
"whscore"
"x2"
"z"
> ab()

25000 , 1
> n <- power <- vector()

> for (j in 1:10)

+ {

+ z <- ab(fold=j*0.01)

+ n[j] <- z[1]

+ power[j] <- z[2]

+ } # Outputting:

250 ,   0.2059567
500 ,   0.3620607
750 ,   0.5030827
1000 , 0.6224936
1250 , 0.7191053
1500 , 0.7946388
1750 , 0.8521205
2000 ,   0.894913
2250 , 0.9261902
2500 , 0.9486956
> plot(n, power, xlab="Sample size", ylab="Power")

> title("SNP-BMI-T2D association in EPIC-Norfolk study")

> lines(n, power, col="red")

> # Outputting: Figure 46.
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Figure 46 Biostatistical power vs. sample size using the function ab() from the CRAN package gap (genetic analysis package) for genetic data analysis of population and family data.
With respect to the about program in R computing the biostatistical power as a function of sample size, using the function ab() in the CRAN package gap:
(a)
What are the functions of each line of R code-segment in the above sample R program?
(b)
Re-run the above code-segment in an R environment.

(c)
Use the sample R program to determine the sample sizes for a biostatistical power of: (i) 0.90, and (ii) 0.95 .
3.
Biostatistical modeling using spline analysis: The CRAN package grofit  (growth fitting), published on 2/8/2010, is a package designed to fit many growth curves obtained under different conditions in order to derive a conclusive dose-response curve. It contains many functions useful for data analysis, high-level graphics, utility operations, functions for computing sample size and power, importing datasets, imputing missing values, advanced table making, variable clustering, character string manipulation, conversion of S objects to LaTeX code, and recoding variables. For example, for a compound that potentially affects growth. The function drFitSpline() in the package grofit:

(a)
fits data to different parametric models, and
(b)
provides a model free spline fit to circumvent systematic errors that might occur within application of parametric methods.
Thus, the function drFitSpline() may be used to fit smoothed splines to dose response data in epidemiologic investigations.

The following is an example using the function drFitSpline() with prepared data: a dataset is prepared, and the function is then applied to obtain a spline fit.
The usage formula for this function is:

drFitSpline(conc, test, drID = "undefined", control = grofit.control())

for which the arguments are:
conc
Numeric vector, concentration (dose) data.
test
Numeric vector, response data belonging to conc.

drID
Character, identifying the dose response data.

control
Object of class grofit.control containing a list of options generated by the function grofit.control. This function uses the R internal function smooth.spline() to fit a spline to the provided data, and the EC50* value is calculated from the resulting curve.

*EC50 = The half maximal effective concentration, which is the concentration of a substance which induces a response halfway between the baseline and maximum after some specified exposure time. It is commonly used as a measure of the potency of a drug.
The result is to generate an object of class drFit with the following parameters:

raw.conc
Raw data provided to the function as conc.

raw.test
Raw data provided to the function as test.

drID
Character, identifying the dose response data.
fit.conc
Fitted concentration values.
fit.tes
Fitted response values.

spline nls
object generated by the smooth.spline function.
fitFlag
Logical, indicating whether a spline could fitted successfully to data.
reliable
Logical, indicating whether the provided data is reliable (to be set manually).

control
Object of class grofit.control containing a list of options passed to the function as control.

Parameters
List of parameters estimated from dose response curve fit.

EC50
Half maximal concentration.

yEC50
Response value related to EC50.
EC50.orig
EC50 value in original scale, if a transformation was applied.

xEC50. Orig
Response value for EC50 in original scale, if a transformation was applied
The following R code-segments runs the program for drBootSpline():

> install.packages("grofit")

> require(grofit)
Loading required package: grofit

> library(grofit)

> ls("package:grofit") # Outputting: (Abbreviated)
[1]
"drBootSpline"
"drFit"
"drFitSpline"
[4]
"gcBootSpline"
"gcFit"
"gcFitModel"
[7]
"gcFitSpline"
"gompertz"
"gompertz.exp"
…………………………………………………………………………………………...
[31]
"summary.gcFit"
"summary.gcFitModel"
"summary.gcFitSpline"

> require(grofit)

>

> x <- 1:30

> y <- 1/(1+exp(-0.5*(15-x)))+rnorm(30)/20

> TestRun <- drFitSpline(x,y)
=== Dose response curve estimation ================

--- EC 50 -----------------------------------------

--> undefined

xEC50  14.4534534534535
yEC50  0.538204476155241
> print(summary(TestRun))

EC50
yEC50
EC50.orig
yEC50.orig

1
14.45345
0.5382045
14.45345
0.5382045
> plot(TestRun)
> # Outputting: Figure 47.
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Figure 47 Biostatistical modeling by spline analysis: using the function drFitSpline(x,y) from the CRAN package grofit (growth fitting) to provide a model-free spline fit to circumvent systematic errors that might occur within application of parametric methods.
With respect to the about program in R computing the biostatistical power as a function of sample size, using the function drFitSpline() in the CRAN package grofit:
(a)
What are the functions of each line of R code-segment in the above sample R program?

(b)
Re-run the above code-segment in an R environment.
(c)
Use the sample R program to obtain model-free spline fits for prepared datasets {(xi, yi)}I = 1, 2, 3, …, n, for n = (i) 100, and (ii) 1000.
4.
Missing data analysis

The CRAN package Hmisc (Harrell miscellaneous), published on 3/29/2012, contains many functions useful for data analysis, high-level graphics, utility operations, functions for computing sample size and power, importing datasets, imputing missing values, advanced table making, variable clustering, character string manipulation, conversion of S, etc. Thus, the function impute(), and associated generic functions and methods for imputation, do simple and transcan imputation and print, summarize, and subscript variables that have NAs filled-in with imputed values. The simple imputation method involves filling in NAs with constants, with a specified single-valued function of the non-NAs, or from a sample (with replacement) from the non-NA values (useful in multiple imputation). Note that:
(a)
The print method places * after variable values that were imputed.

(b)
The summary method summarizes all imputed values and then uses the next summary method available for the variable.
(c)
The subscript method preserves attributes of the variable and subsets the list of imputed values corresponding with how the variable was subsetted.
The function is.imputed() checks whether observations are imputed.

The usage formulas of this function, and of its associated functions, are:
impute(x, ...)

## Default S3 method:
impute(x, fun=median, ...)
## S3 method for class ’impute’:
print(x, ...)
## S3 method for class ’impute’:
summary(object, ...),
is.imputed(x)

for which the argument are

x
a vector or an object created by transcan, or a vector needing basic unconditional imputation. When there are no NAs and x is a vector, it is returned unchanged.
fun
the name of a function to use in computing the (single) imputed value from the non-NAs. The default is median. If instead of specifying a function as fun, a single value or vector (numeric, or character if the object is a factor) is specified, those values are used for insertion.
fun
may also be the character string "random" to draw random values for imputation, with the random values not forced to be the same if there are multiple NAs. For a vector of constants, the vector must be of length one (indicating the same value replaces all NAs) or must be as long as the number of NAs, in which case the values correspond to consecutive NAs to replace. For a factor object, constants for imputation may include character values not in the current levels of object. In that case new levels are added. If object is of class "factor", fun is ignored and the most frequent category is used for imputation.

object
an object of class "impute"

...
ignored

The output result of this function is a vector with class "impute" placed in front of existing classes. For is.imputed, a vector of logical values is returned (all TRUE if object is not of class impute).
The following is an example using the function impute() with prepared data: a data vector, with an NA, is specified, and the function is then applied to obtain an imputation:
> install.packages("Hmisc")

> require(Hmisc)

Loading required package: Hmisc

Loading required package: survival

Loading required package: splines

Hmisc library by Frank E Harrell Jr

Type library(help='Hmisc'), ?Overview, or ?Hmisc.Overview')

to see overall documentation.

NOTE:Hmisc no longer redefines [.factor to drop unused levels when

subsetting. To get the old behavior of Hmisc type dropUnusedLevels().

Attaching package: ‘Hmisc’

The following object(s) are masked from ‘package:survival’:
untangle.specials

The following object(s) are masked from ‘package:base’:
format.pval, round.POSIXt, trunc.POSIXt, units

> library(Hmisc)

> ls("package:Hmisc") # Outputting: (Abbreviated)
[1]
"%nin%"
"[.Cbind"
[3]
"[.describe"
"[.discrete"
[5]
"[.impute"
"[.labelled"
……………………………………………………….

[169]
"improveProb"
"impute"
[171]
"impute.default"
"impute.transcan"
………………………………………………………..

[505]
"yearDays"
"yInch"
[507]
"zoom"
> Preparing the data vector age:

> age <- c(1,2,2,3, 3,3,4,4,4,4,NA,6,6,6,6,6,6,7,7,7,7,7,7,7)

> age # Checking the data vector age
[1]  1  2  2  3  3  3  4  4  4  4  NA  6  6  6  6  6  6  7  7  7  7  7  7  7
> impute(age)
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24
1  2  2  3  3  3  4  4  4    4    6*    6   6    6    6    6    6    7    7    7    7    7    7    7
> impute(age, 5)
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24
1  2  2  3  3  3  4  4  4    4   5*    6    6    6    6    6    6    7    7    7    7    7    7    7
> impute(age, 6)
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24
1  2  2  3  3  3  4  4  4    4   6*    6    6    6    6    6    6    7    7    7    7    7    7    7
> impute(age, 7)
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24
1  2  2  3  3  3  4  4  4    4   7*    6    6    6    6    6    6    7    7    7    7    7    7    7
> impute(age, mean)
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24
1  2  2  3  3  3  4  4  4    4   5*    6    6    6    6    6    6    7    7    7    7    7    7    7
> impute(age, "random")
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24
1  2  2  3  3  3  4  4  4    4   7*    6    6    6    6    6    6    7    7    7    7    7    7    7
> impute(age, "random")
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24
1  2  2  3  3  3  4  4  4    4   4*    6    6    6    6    6    6    7    7    7    7    7    7    7
> impute(age, "random")
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24
1  2  2  3  3  3  4  4  4    4   4*    6    6    6    6    6    6    7    7    7    7    7    7    7
> impute(age, "random")
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24
1  2  2  3  3  3  4  4  4    4   6*    6    6    6    6    6    6    7    7    7    7    7    7    7
> impute(age, "random")
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24
1  2  2  3  3  3  4  4  4    4   7*    6    6    6    6    6    6    7    7    7    7    7    7    7
>

> # Note the last 5 "random" imputations of the Missing Data in Position 11!
With respect to the about program in R computing the Missing Data point, using the function impute() in the CRAN package Hmisc,
(a)
What are the functions of each line of R code-segment in the above sample R program?
(b)
Re-run the above code-segment in an R environment.
(c)
Use the sample R program and the function impute(age, “random”), obtain 5 further imputations of the given dataset age.
(d)
What are the: (i) advantages, and (ii) disadvantages, of using the function impute() as a process for Missing Data Analysis?
5.
Bioconductor case studies:

Entries to the Bioconductor environment are available via the R environment. For example:

I.
Through an entry level tutorial, such as: “Bioconductor basics tutorial” by Sandrine Dudoit and Robert Gentleman,[41] June 24, 2002.

Thus, some, or all, of the following library calls may be needed.

> library(XML)

> library(Biobase)

> library(annotate)

> library(genefilter)

> library(golubEsets)
> library(ctest)
> library(MASS)
> library(cluster)
II.
Directly, via the Internet: http://www.bioconductor.org/packages/release/bioc/
III.
Through the collection of programs in Biobase -

> library("Biobase")

Welcome to Bioconductor

Vignettes contain introductory material. To view, type

'browseVignettes()'. To cite Bioconductor, see

'citation("Biobase")' and for packages

'citation("pkgname")'.

> browseVignettes()

> # Outputting: Vignettes found by browseVignettes()

IV.
From the collection of over 70 packages in the Bioconductor software project, the function > cLite(), in the package BiocInstaller, which installs or updates Bioconductor and CRAN packages, ensuring that the appropriate version of Bioconductor are installed, and that all packages remain up to date.
The usage formula of the function biocLite() is:
biocLite (pkgs=c("Biobase", "IRanges", "AnnotationDbi"),
suppressUpdates=FALSE, suppressAutoUpdate=FALSE,
siteRepos=character(), ask=TRUE, ...)

for which the arguments are:

pkgs
character() of package names to install or update. A value of character(0) and suppressUpdates=FALSE updates packages without installing new ones.
suppressUpdates
logical(1) indicating whether to suppress automatic updating of all installed packages, or character() of regular expressions specifying which packages to NOT automatically update.
suppressAutoUpdate
logical(1) indicating whether the BiocInstaller package updates itself.
siteRepos
character() representing an additional repository in which to look for packages to install. This repository will be prepended to the default repositories (which may be seen with biocinstallRepos).
ask
logical(1) indicating whether to prompt user before installed packages are updated, or the character string 'graphics', which brings up a widget for choosing which packages to update. If TRUE, user may choose whether to update all outdated packages without further prompting, to pick and choose packages to update, or to cancel updating (in a non-interactive session, no packages will be updated). Otherwise, the value is passed to update.packages.
...
Additional arguments.

The function biocLite() is used after sourcing the file biocLite.R. This will install the BiocInstaller package .
The output results include the following:

(1)
biocLite() returns the pkgs argument, invisibly.
(2)
biocinstallRepos returns the Bioconductor and CRAN repositories used by biocLite.
(3)
install.packages installs the packages themselves.

(4)
update.packages updates all installed packages.
(5)
chooseBioCmirror lets one choose from a list of all public Bioconductor mirror URLs.
(6)
chooseCRANmirror lets one choose from a list of all public CRAN mirror URLs.
(7)
monograph_group, RBioinf_group, and biocases_group return package names associated with Bioconductor publications. all_group returns the names of all Bioconductor software packages.
For example (and this is a big one): Starting from the tutorial, “Bioconductor basics tutorial” by Dudoit and Gentleman[41]:
> library(XML)
> library(Biobase)
> library(annotate)
> library(genefilter) # Not needed in this Example
> library(golubEsets)
> library(ctest) # Not needed in this Example
> library(MASS)
> library(cluster)
Internet: http://www.bioconductor.org/packages/release/bioc/
Bioconductor Software Packages

Bioconductor version: Release (2.10)

	Package
	Maintainer
	Title

	a4
	Tobias Verbeke 
	Automated Affymetrix Array Analysis Umbrella Package

	a4Base
	Tobias Verbeke 
	Automated Affymetrix Array Analysis Base Package

	a4Classif
	Tobias Verbeke 
	Automated Affymetrix Array Analysis Classification Package

	a4Core
	Tobias Verbeke 
	Automated Affymetrix Array Analysis Core Package

	a4Preproc
	Tobias Verbeke 
	Automated Affymetrix Array Analysis Preprocessing Package

	a4Reporting
	Tobias Verbeke 
	Automated Affymetrix Array Analysis Reporting Package


a4
Automated Affymetrix Array Analysis Umbrella Package

Bioconductor version: Release (2.10)
Automated Affymetrix Array Analysis Umbrella Package

Author: Willem Talloen, Tobias Verbeke
Maintainer: Tobias Verbeke <tobias.verbeke at openanalytics.eu>
To install this package, start R and enter:
source("http://bioconductor.org/biocLite.R")
biocLite("a4")

To cite this package in a publication, start R and enter:
citation("a4")

Documentation

PDF
R Script
a4vignette
PDF

Reference Manual
Text

NEWS
Details

biocViews
Bioinformatics, Microarray, Software
Depends
a4Base, a4Preproc, a4Classif, a4Core, a4Reporting
Imports

Suggests
MLP, nlcv, ALL
System Requirements


License
GPL-3
URL

Depends On Me

Imports Me

Suggests Me

Version
1.4.0
Since
Bioconductor 2.8 (R-2.13)
Package Downloads

Package Source
a4_1.4.0.tar.gz

Windows Binary
a4_1.4.0.zip (32- & 64-bit)

MacOS 10.5 (Leopard) binary
a4_1.4.0.tgz

Package Downloads Report
Download Stats

R version 2.14.2 (2012-02-29)

Copyright (C) 2012 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

Platform: i386-pc-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.
[Previously saved workspace restored]
> library(XML)
> library(Biobase)
Welcome to Bioconductor
Vignettes contain introductory material. To view, type
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")' and for packages 'citation("pkgname")'.
> library(annotate)
Loading required package: AnnotationDbi
# library(genefilter)
> library(golubEsets)

# library(ctest)
> library(MASS)
Attaching package: ‘MASS’
The following object(s) are masked from ‘package:AnnotationDbi’:
select
> library(cluster)

1.
R Script—Bioconductor
www.bioconductor.org/packages/2.10/bioc/.../PairwiseAlignments.R Cached
#
# R code from vignette source 'Alignments.Rnw'
>
>#######################################

>### code chunk number 1: options

>#######################################

> options(width=72)
>
> ######################################

> ### code chunk number 2: main1

> ######################################

> library(Biostrings)
Loading required package: IRanges
Attaching package: ‘IRanges’
The following object(s) are masked from ‘package:Biobase’:
updateObject
The following object(s) are masked from ‘package:base’:
cbind, eval, intersect, Map, mapply, order, paste, pmax,
pmax.int, pmin, pmin.int, rbind, rep.int, setdiff, table,
union
> pairwiseAlignment(pattern = c("succeed", "precede"),
+                                                        subject = "supersede")
Global PairwiseAlignedFixedSubject (1 of 2)

pattern: [1] succ--eed
subject: [1] supersede
score: -33.99738
> #####################################

> ### code chunk number 3: main2

> #####################################
> pairwiseAlignment(pattern = c("succeed", "precede"),
+ subject = "supersede", type = "local")
Local PairwiseAlignedFixedSubject (1 of 2)

pattern: [1] su
subject: [1] su
score: 5.578203
> ######################################

> ### code chunk number 4: main3

> ######################################
> pairwiseAlignment(pattern = c("succeed", "precede"),
+     subject = "supersede", gapOpening = 0, gapExtension = -1)
Global PairwiseAlignedFixedSubject (1 of 2)

pattern: [1] su-cce--ed
subject: [1] sup--ersed
score: 7.945507
> ######################################

> ### code chunk number 5: main4

> ######################################
> submat <- matrix(-1, nrow = 26, ncol = 26,
+            dimnames = list(letters, letters))
> diag(submat) <- 0
> pairwiseAlignment(pattern = c("succeed", "precede"),
+       subject = "supersede", substitutionMatrix = submat,

+       gapOpening = 0, gapExtension = -1)
Global PairwiseAlignedFixedSubject (1 of 2)

pattern: [1] succe-ed
subject: [1] supersed
score: -5
> #####################################

> ### code chunk number 6: main5

> #####################################
> submat <- matrix(-1, nrow = 26, ncol = 26,

+                              dimnames = list(letters, letters))
> diag(submat) <- 0
> pairwiseAlignment(pattern = c("succeed", "precede"),

+        subject = "supersede", substitutionMatrix = submat,

+        gapOpening = 0, gapExtension = -1, scoreOnly = TRUE)
[1] -5 -5
> ######################################

> ### code chunk number 7: classes1

> ######################################
> psa1 <- pairwiseAlignment(pattern = c("succeed", "precede"), + subject = "supersede")
> class(psa1)
[1] "PairwiseAlignedFixedSubject"

attr(,"package")

[1] "Biostrings"

>
> ######################################

> ### code chunk number 8: classes2

> ######################################
> summary(psa1)
Global Fixed Subject Pairwise Alignment

Number of Alignments: 2
Scores:
Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
-34.00
-31.78
-29.56
-29.56
-27.34
-25.12
Number of matches:
Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
3.00
3.25
3.50
3.50
3.75
4.00
Top 7 Mismatch Counts:

SubjectPosition
Subject
Pattern
Count
Probability

1
3
p
c
1
0.5

2
4
e
c
1
0.5

3
4
e
r
1
0.5

4
5
r
e
1
0.5

5
6
s
c
1
0.5

6
8
d
e
1
0.5

7
9
e
d
1
0.5
> class(summary(psa1))
[1] "PairwiseAlignedFixedSubjectSummary"

attr(,"package")

[1] "Biostrings"
> #######################################

> ### code chunk number 9: classes3

> #######################################
> class(pattern(psa1))
[1] "QualityAlignedXStringSet"

attr(,"package")

[1] "Biostrings"
> submat <- matrix(-1, nrow = 26, ncol = 26,
+ dimnames = list(letters, letters))

> diag(submat) <- 0
> psa2 <- pairwiseAlignment(pattern = c("succeed", "precede"), + subject = "supersede", substitutionMatrix = submat,

+ gapOpening = 0, gapExtension = -1)
> class(pattern(psa2))
[1] "AlignedXStringSet"

attr(,"package")

[1] "Biostrings"
> #######################################

> ### code chunk number 10: helper1

> #######################################
> submat <- matrix(-1, nrow = 26, ncol = 26,
+                               dimnames = list(letters, letters))
> diag(submat) <- 0
> psa2 <- pairwiseAlignment(pattern = c("succeed", "precede"), 
+              subject = "supersede", substitutionMatrix = submat,

+             gapOpening = 0, gapExtension = -1)
> score(psa2)
[1] -5 -5
> nedit(psa2)
[1] 4 5
> nmatch(psa2)
[1] 4 4
> nmismatch(psa2)
[1] 3 3
> nchar(psa2)
[1] 8 9
> aligned(psa2)
A BStringSet instance of length 2
width seq

[1]   9 succe-ed-

[2]   9 pr-ec-ede
> as.character(psa2)
[1] "succe-ed-" "pr-ec-ede"
> as.matrix(psa2)

[,1]
[,2]
[,3]
[,4]
[,5]
[,6]
[,7]
[,8]
[,9]

[1,]
"s"
"u"
"c"
"c"
"e"
"-"
"e"
"d"
"-"
[2,]
"p"
"r"
"-"
"e"
"c"
"-"
"e"
"d"
"e"
> consensusMatrix(psa2)

[,1]
[,2]
[,3]
[,4]
[,5]
[,6]
[,7]
[,8]
[,9]

-
0
0
1
0
0
2
0
0
1

c
0
0
1
1
1
0
0
0
0

d
0
0
0
0
0
0
0
2
0

e
0
0
0
1
1
0
2
0
1

p
1
0
0
0
0
0
0
0
0

r
0
1
0
0
0
0
0
0
0

s
1
0
0
0
0
0
0
0
0

u
0
1
0
0
0
0
0
0
0
> ######################################
> ### code chunk number 11: helper2

> #######################################
> summary(psa2)
Global Fixed Subject Pairwise Alignment

Number of Alignments: 2
Scores:
Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
-5
- 5
-5
-5
-5
-5
Number of matches:
Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
4
4
4
4
4
4
Top 6 Mismatch Counts:

SubjectPosition
Subject
Pattern
Count
Probability

1
1
s
p
1
0.5

2
2
u
r
1
0.5

3
3
p
c
1
0.5

4
4
e
c
1
0.5

5
5
r
c
1
0.5

6
5
r
e
1
0.5
> mismatchTable(psa2)

PatternId
PatternStart
PatternEnd
PatternSubstring
SubjectStart

1
1
3
3
c
3

2
1
4
4
c
4

3
1
5
5
e
5

4
2
1
1
p
1

5
2
2
2
r
2

6
2
4
4
c
5

SubjectEnd
SubjectSubstring

1
3
p

2
4
e

3
5
r

4
1
s

5
2
u

6
5
r
> mismatchSummary(psa2)
$pattern

$pattern$position

Position
Count
Probability

1
1
1
0.5

2
2
1
0.5

3
3
1
0.5

4
4
2
1.0

5
5
1
0.5

6
6
0
0.0

7
7
0
0.0
$subject

SubjectPosition
Subject
Pattern
Count
Probability

1
1
s
p
1
0.5

2
2
u
r
1
0.5

3
3
p
c
1
0.5

4
4
e
c
1
0.5

5
5
r
c
1
0.5

6
5
r
e
1
0.5
> ######################################

> ### code chunk number 12: helper3

> ######################################
> class(pattern(psa2))
[1] "AlignedXStringSet"

attr(,"package")

[1] "Biostrings"
> aligned(pattern(psa2))
A BStringSet instance of length 2
width seq

[1]   8 succe-ed

[2]   9 pr-ec-ede
> nindel(pattern(psa2))

Length
WidthSum

[1,]
1
1

[2,]
2
2
> start(subject(psa2))
[1] 1 1
> end(subject(psa2))
[1] 8 9
> #######################################

> ### code chunk number 13: editdist1

> #######################################
> agrepBioC <- function(pattern, x, ignore.case = FALSE,
+                                         value = FALSE, max.distance = 0.1)

+ {

+   if (!is.character(pattern)) pattern <- as.character(pattern)

+   if (!is.character(x)) x <- as.character(x)

+   if (max.distance < 1)

+       max.distance <- ceiling(max.distance / nchar(pattern))

+       characters <- unique(unlist(strsplit(c(pattern, x), "",
+                                             fixed = TRUE)))

+   if (ignore.case)

+     substitutionMatrix <-

+       outer(tolower(characters), tolower(characters),
+       function(x,y) -as.numeric(x!=y))

+   else

+     substitutionMatrix <-

+       outer(characters, dimnames(substitutionMatrix characters, 
+                  function(x,y) -as.numeric(x!=y))

+   dimnames(substitutionMatrix) <- list(characters, characters)

+   distance <-

+      - pairwiseAlignment(pattern = x, subject = pattern,

+                               substitutionMatrix = substitutionMatrix,

+                               type = "local-global",

+                               gapOpening = 0, gapExtension = -1,

+                               scoreOnly = TRUE)

+   whichClose <- which(distance <= max.distance)

+   if (value)

+     whichClose <- x[whichClose]

+   whichClose

+ }

> cbind(base = agrep("laysy", c("1 lazy", "1", "1 LAZY"),
+            max = 2, value = TRUE), bioc = agrepBioC("laysy",
+            c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE))

base
bioc
[1,]
"1 lazy"
"1 lazy"
> cbind(base = agrep("laysy", c("1 lazy", "1", "1 LAZY"),
+            max = 2, ignore.case = TRUE),

+            bioc = agrepBioC("laysy", c("1 lazy", "1", "1 LAZY"),
+            max = 2, ignore.case = TRUE))

base
bioc

[1,]
1
1

[2,]
3
3
> #######################################

> ### code chunk number 14: lkblo

> #######################################
> data(BLOSUM50)

> BLOSUM50[1:4,1:4]

A
R
N
D

A
5
-2
-1
-2

R
-2
7
-1
-2

N
-1
-1
7
2

D
-2
-2
2
8
> nwdemo <- pairwiseAlignment(AAString("PAWHEAE"),
+        AAString("HEAGAWGHEE"), substitutionMatrix = BLOSUM50,

+        gapOpening = 0, gapExtension = -8)
> nwdemo
Global PairwiseAlignedFixedSubject (1 of 1)

pattern: [1] PA--W-HEAE
subject: [2] EAGAWGHE-E
score: 1
> compareStrings(nwdemo)
[1] "?A--W-HE+E"
> pid(nwdemo)
[1] 50
> #######################################

> ### code chunk number 15: adapter1

> #######################################
> simulateReads <-

+ function(N, adapter, experiment, substitutionRate = 0.01,
+ gapRate = 0.001) {

+    chars <- strsplit(as.character(adapter), "")[[1]]

+    sapply(seq_len(N), function(i, experiment, substitutionRate, 
+                 gapRate) {

+        width <- experiment[["width"]][i]

+        side <- experiment[["side"]][i]

+        randomLetters <-

+           function(n) sample(DNA_ALPHABET[1:4], n,
+                 replace = TRUE)
+        randomLettersWithEmpty <-

+          function(n)

+          sample(c("", DNA_ALPHABET[1:4]), n, replace = TRUE,

+                        prob = c(1 - gapRate, rep(gapRate/4, 4)))

+    nChars <- length(chars)

+    value <- paste(ifelse(rbinom(nChars,1,substitutionRate),
+                              randomLetters(nChars), chars),

+                              randomLettersWithEmpty(nChars),

+                              sep = "", collapse = "")

+                              if (side)

+     value <- paste(c(randomLetters(36 - width),
+                               substring(value, 1, width)),

+                               sep = "", collapse = "")

+     else

+        value <- paste(c(substring(value, 37 - width, 36),
+                                  randomLetters(36 - width)),

+                                  sep = "", collapse = "")

+        value

+     }, experiment = experiment,
+               substitutionRate = substitutionRate, gapRate = gapRate)

+ }

>
> adapter <-
+ DNAString("GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA")
> set.seed(123)
> N <- 1000
> experiment <- list(side = rbinom(N, 1, 0.5),
+                               width = sample(0:36, N, replace = TRUE))
> table(experiment[["side"]], experiment[["width"]])
      0    1   2     3    4     5  6    7    8    9  10  11  12  13  14  15  16  17  18  19  20  21
0  13  10   8     7   11  18  9  15  15  18  16  10  11    9  13  13  18  18  14    9  19  13
1  15  21  21  12  17  14  8  11  12  10  14  16    7  14  19  14  14  16  14  16  16  16
    22  23   24  25  26  27  28  29  30  31  32  33  34  35  36
0  19  19   12    6  15  18  12  15  16  17  19    6  13  18  15
1  13  11    9   11  15  10  10  16  15  15  11    7  12    7  14
> adapterStrings <- simulateReads(N, adapter, experiment,
+                               substitutionRate = 0.01, gapRate = 0.001)
> adapterStrings <- DNAStringSet(adapterStrings)
> #######################################

> ### code chunk number 16: adapter2

> #######################################
> M <- 5000
> randomStrings <- apply(matrix(sample(DNA_ALPHABET[1:4], 
+                               36 * M, replace = TRUE),

+                               nrow = M), 1, paste, collapse = "")
> randomStrings <- DNAStringSet(randomStrings)

>
> #######################################

> ### code chunk number 17: adapter3

> #######################################

> ## Method 1: Use edit distance with an FDR of 1e-03
> submat1 <- nucleotideSubstitutionMatrix(match = 0,
+                     mismatch = -1, baseOnly = TRUE)
> randomScores1 <- pairwiseAlignment(randomStrings,
+              adapter, substitutionMatrix = submat1,

+              gapOpening = 0, gapExtension = -1, scoreOnly = TRUE)
> quantile(randomScores1, seq(0.99, 1, by = 0.001))
99%  99.1%  99.2%  99.3%  99.4%  99.5%  99.6%  99.7%  99.8%  99.9%  100%
  -16      -16      -16      -16      -16        -16      -16       -16       -16      -15       -14
> adapterAligns1 <- pairwiseAlignment(adapterStrings, adapter, + substitutionMatrix=submat1,gapOpening=0, gapExtension = -1)
> table(score(adapterAligns1) > quantile(randomScores1, 0.999), + experiment[["width"]])
              0    1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20
FALSE  28  31  29  19  28  32  17  26  27  28  30  26  18  23  32  27  32  34  28  25  35
TRUE      0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
            21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
FALSE  29  32  30  21  17  30  28  22    5    1    0    0    0    0    0    0
TRUE      0    0    0    0    0    0    0    0  26  30  32  30  13  25  25  29
> #######################################

> ### code chunk number 18: adapter4

>#######################################

>## Method 2: Use consecutive matches anywhere in string
+                         with an FDR of 1e-03
> submat2 <- nucleotideSubstitutionMatrix(match = 1,
+                     mismatch = -Inf, baseOnly = TRUE)
> randomScores2 <- pairwiseAlignment(randomStrings, adapter, 
+                                 substitutionMatrix = submat2,

+                 type = "local", gapOpening = 0, gapExtension = -Inf,

+                 scoreOnly = TRUE)
> quantile(randomScores2, seq(0.99, 1, by = 0.001))
  99%  99.1%  99.2%  99.3%  99.4%  99.5%  99.6%  99.7%  99.8%  99.9%     100%
7.000   8.000   8.000   8.000  8.000   8.000   8.000   8.000   9.000   9.001  11.000
> adapterAligns2 <- pairwiseAlignment(adapterStrings, adapter, 
+                                substitutionMatrix = submat2, type = "local",
+                                gapOpening = 0, gapExtension = -Inf)
> table(score(adapterAligns2) > quantile(randomScores2, 0.999), 
+                                                      experiment[["width"]])
              0    1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20

FALSE  28  31  29  19  28  32  17  26  27  28    2    0    0    1    2    0    1    0    1    1    0
TRUE      0    0    0    0    0    0    0    0    0    0  28  26  18  22  30  27  31  34  27  24  35
           21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36

FALSE   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
TRUE   29  32  30  21  17  30  28  22  31  31  32  30  13  25  25  29
> # Determine if the correct end was chosen
> table(start(pattern(adapterAligns2)) >
+           37 – end(pattern(adapterAligns2)), experiment[["side"]])
                0      1
FALSE  466    58
TRUE      41  435
> ######################################
> ### code chunk number 19: adapter5

> ######################################

> ## Method 3: Use consecutive matches on the ends with an
+                          FDR of 1e-03
> submat3 <- nucleotideSubstitutionMatrix(match = 1, mismatch + 
                       = -Inf, baseOnly = TRUE)
> randomScores3 <-

+    pairwiseAlignment(randomStrings, adapter, substitutionMatrix 
+    = submat3, type = "overlap", gapOpening = 0,
+    gapExtension = -Inf, scoreOnly = TRUE)
> quantile(randomScores3, seq(0.99, 1, by = 0.001))
99%  99.1%  99.2%  99.3%  99.4%  99.5%  99.6%  99.7%  99.8%  99.9%  100%
     4          4         4          4          4         4          4          5          5          5         6
> adapterAligns3 <- pairwiseAlignment(adapterStrings, adapter, 
+          substitutionMatrix = submat3,
+          type = "overlap", gapOpening = 0, gapExtension = -Inf)

> table(score(adapterAligns3) > quantile(randomScores3, 0.999), 
+                                                                      experiment[["width"]])
              0    1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20

FALSE  28  31  29  19  28  32    2    1    0    3    3    0    0    2    3    6    3    6    5    7    4
TRUE      0    0    0    0    0    0  15  25  27  25  27  26  18  21  29  21  29  28  23  18  31
            21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
FALSE    8    7    2    4    7    8    5    4    7    6    4    8    4  11    5  10
TRUE    21  25  28  17  10  22  23  18  24  25  28  22    9 14   20  19
> # Determine if the correct end was chosen
> table(end(pattern(adapterAligns3)) == 36,

+           experiment[["side"]])
                0       1
FALSE  478     70
TRUE      29  423
> #######################################

> ### code chunk number 20: adapter6

> #######################################

> ## Method 4: Allow mismatches and indels on the ends with
+ an FDR of 1e-03
> randomScores4 <- pairwiseAlignment(randomStrings, adapter, 
+                                 type = "overlap", scoreOnly = TRUE)

> quantile(randomScores4, seq(0.99, 1, by = 0.001))
        99%       99.1%       99.2%       99.3%        99.4%       99.5%       99.6%
7.927024  7.927024  7.927024  7.927024  7.927024  7.927024  7.973007
     99.7%       99.8%        99.9%         100%
9.908780  9.908780  9.908780  11.890536
> adapterAligns4 <-

> pairwiseAlignment(adapterStrings, adapter, type = "overlap")

+ table(score(adapterAligns4) > quantile(randomScores4, 0.999), 
+                                                                      experiment[["width"]])
              0    1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20

FALSE  28  31  29  19  28  32    2    1    0    0    0    0    0    0    0    0    0    0    0    0    0
TRUE      0    0    0    0    0    0  15  25  27  28  30  26  18  23  32  27  32  34  28  25  35
           21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
FALSE  0     0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
TRUE  29  32  30  21  17  30  28  22  31  31  32  30  13  25  25  29
> # Determine if the correct end was chosen
> table(end(pattern(adapterAligns4)) == 36,
+           experiment[["side"]])
                0       1
FALSE  488     20
TRUE      19  473
> #######################################

> ### code chunk number 21: adapter7

> #######################################

> ## Method 4 continued: Remove adapter fragments
> fragmentFound <-

+                score(adapterAligns4) > quantile(randomScores4, 0.999)
> fragmentFoundAt1 <-

+                fragmentFound & (start(pattern(adapterAligns4)) == 1)
> fragmentFoundAt36 <-

+                fragmentFound & (end(pattern(adapterAligns4)) == 36)
> cleanedStrings <- as.character(adapterStrings)
> cleanedStrings[fragmentFoundAt1] <-

+ as.character(narrow(adapterStrings[fragmentFoundAt1],
+ end=36, width=36–

+ end(pattern(adapterAligns4[fragmentFoundAt1]))))
> cleanedStrings[fragmentFoundAt36] <-

+   as.character(narrow(adapterStrings[fragmentFoundAt36],
+   start = 1, width =
+            start(pattern(adapterAligns4[fragmentFoundAt36])) - 1))
> cleanedStrings <- DNAStringSet(cleanedStrings)
> cleanedStrings
A DNAStringSet instance of length 1000


width
seq

[1]
26
TTGCACGATAGTTGCATATGCTACAA

[2]
15
ATTTCTCCTTCTCAG

[3]
36
TGAAAGAAGGTAATTTGATTAAGCCCTTCGCAAAAC

[4]
5
CAAAC

[5]
5
TCTCA

[6]
19
CGTGAACAGGACAATGGCC

[7]
8
GGAAGCCA

[8]
26
CGGGTCCTGGTCCTGGGGCCATCCAT

[9]
36
TGGCACATCGCAGCTAAATCGACAGTACTATCATGA

...
...
...

[992]
36
TTTAAACTACTGGAATAAATGCAAGTGGACAAACGC

[993]
5
TGGCA

[994]
36
TGAAATATGTCATCTCATACAAGCACGTACTCATTG

[995]
36
CTCCGGTACACGCCTCGGTGCACACATAATTGGGAT

[996]
3
GTT

[997]
25
AATGTGATGTCTCACTTCAAAGGCG

[998]
9
AAATTATTC

[999]
22
ACTAACTGCACTCCCGCACCAT

[1000]
20
ATCAGGTGTTGGGCCTGCCG
>
> #######################################

> ### code chunk number 22: genome1

> #######################################
> data(phiX174Phage)
> genBankPhage <- phiX174Phage[[1]]
> nchar(genBankPhage)
[1] 5386
> data(srPhiX174)
> srPhiX174
A DNAStringSet instance of length 1113


width
seq

[1]
35
GTTATTATACCGTCAAGGACTGTGTGACTATTGAC

[2]
35
GGTGGTTATTATACCGTCAAGGACTGTGTGACTAT

[3]
35
TACCGTCAAGGACTGTGTGACTATTGACGTCCTTC

[4]
35
GTACGCCGGGCAATAATGTTTATGTTGGTTTCATG

[5]
35
GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAA

[6]
35
GGGCAATAATGTTTATGTTGGTTTCATGGTTTGGT

[7]
35
GTCCTTCCTCGTACGCCGGGCAATAATGTTTATGT

[8]
35
GTTGGTTTCATGGTTTGGTCTAACTTTACCGCTAC

[9]
35
GCAATAATGTTTATGTTGGTTTCATGGTTTGGTCT

...
...
...

[1105]
35
AATAATGTTTATGTTGGTTTCATGTTTTTTTCTAA

[1106]
35
GGTGGTTATTATACCGTCAAGGACTTTGTGACTAT

[1107]
35
CGGGCAATAATGTTTATGTTGGTTTCATGTTTTGT

[1108]
35
ATTGACGTCCTTCCTCGTACGCCGGGCAATAATGC

[1109]
35
ATAATGTTTATGTTGGTTTCATGGTTTGTTCTATC

[1110]
35
GGGCAATAATGTTTATGTTGGTTTCATTTTTTTTT

[1111]
35
CAATAATGTTTATGTTGGTTTCATGGTTTGTTTTA

[1112]
35
GACGTCCTTCCTCGTACGCCGGGCAATGATGTTTA

[1113]
35
ACGCCGGGCAATAATGTTTATGTTGTTTTCATTGT
> quPhiX174
A BStringSet instance of length 1113


width
seq

[1]
35
ZYZZZZZZZZZYYZZYYYYYYYYYYYYYYYYYQYY

[2]
35
ZZYZZYZZZZYYYYYYYYYYYYYYYYYYYVYYYTY

[3]
35
ZZZYZYYZYYZYYZYYYYYYYYYYYYYYVYYYYYY

[4]
35
ZZYZZZZZZZZZYZTYYYYYYYYYYYYYYYYYNYT

[5]
35
ZZZZZZYZYYZZZYYYYYYYYYYYYYYYYYSYYSY

[6]
35
ZZZZZYZYYYZYYZYYYYYYYYYYYSYQVYYYASY

[7]
35
ZZZZZZZZZZYZZZZYYYYYYYYYYYYYYYYYYYY

[8]
35
YYZYYZYYZYYYYZYYVQYYYYYYYYYYYYTYYYY

[9]
35
ZZZYZZZZZYZZZZYYYQYYYYYYYYQYYYQGYNY

...
...
...

[1105]
35
ZZZZZZYZZZYZYYZYQYYYQCYJAYYYQKYJYJJ

[1106]
35
VVLVVVVQVSQPVVVMQSSUJPLQVAGFPGFNFJJ

[1107]
35
ZZZZZZYZYZZYZZZYYYYYYQYYYYYYIAYYYAI

[1108]
35
YYYZYYYZYYYYPYWYYSVVYWVYWYVVMIVRWYG

[1109]
35
ZZZZZYZZZYZYZZVYYYYVYYYQYYYQCYQYQCT

[1110]
35
YYYYTYYYYYTYYYYYYYYTJTTYOAYIIYYYGAY

[1111]
35
ZZYZZZZZZZZZZVZYYVYYYYYYVQYYYIQYAYW

[1112]
35
YZYZZYYYZYYYYYYVYYVYYYYWWVYYYYYWYYV

[1113]
35
ZZYYZYYYYYYZYVZYYYYYYVYYJAYYYIGYCJY
> summary(wtPhiX174)
Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
2.00
2.00
3.00
48.34
6.00
965.00
> fullShortReads <- rep(srPhiX174, wtPhiX174)
> srPDict <- PDict(fullShortReads)
> table(countPDict(srPDict, genBankPhage)
        0          1
37018  16784
> #######################################

> ### code chunk number 23: genome2

> #######################################
> genBankSubstring <- substring(genBankPhage, 2793-34,
+                                                      2811+34)
> genBankAlign <-

+   pairwiseAlignment(srPhiX174, genBankSubstring,

+                          patternQuality = SolexaQuality(quPhiX174),

+                          subjectQuality = SolexaQuality(99L),

+                          type = "global-local")
> summary(genBankAlign, weight = wtPhiX174)
Global-Local Fixed Subject Pairwise Alignment

Number of Alignments: 53802
Scores:
Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
-45.08
35.81
50.07
41.24
59.50
67.35
Number of matches:
Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
21.00
31.00
33.00
31.46
34.00
35.00
Top 10 Mismatch Counts:

SubjectPosition
Subject
Pattern
Count
Probability

1
53
C
T
22965
0.95536234

2
35
C
T
22849
0.99969373

3
76
G
T
1985
0.10062351

4
69
A
T
1296
0.05654697

5
79
C
T
1289
0.07289899

6
58
A
C
1153
0.04783637

7
72
G
A
1130
0.05248978

8
63
G
A
1130
0.04767731

9
67
T
G
1130
0.04721514

10
81
A
G
1103
0.06672313
> revisedPhage <-

+   replaceLetterAt(genBankPhage, c(2793, 2811), "TT")
> table(countPDict(srPDict, revisedPhage))
      0          1
6768  47034
> #######################################

> ### code chunk number 24: genome3

> #######################################
> genBankCoverage <- coverage(genBankAlign,
+ weight = wtPhiX174)
> plot((2793-34):(2811+34), as.integer(genBankCoverage),
+ xlab = "Position", ylab = "Coverage", type = "l")
> # Outputting: Figure 48.
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Figure 48 Bioconductor (PairwiseAlignments)-1.
> nchar(genBankSubstring)
[1] 87
> slice(genBankCoverage, lower = 1)
Views on a 87-length Rle subject
views:
      start  end  width

[1]        1     87       87 [8899 9698 10484 11228 11951 12995 13547 ...]
> #######################################

> ### code chunk number 25: profiling1

> #######################################
> N <- as.integer(seq(500, 5000, by = 500))
> timings <- rep(0, length(N))
> names(timings) <- as.character(N)
> for (i in seq_len(length(N))) {

+   string1 <- DNAString(paste(sample(DNA_ALPHABET[1:4],
+                   N[i], replace = TRUE), collapse = ""))

+   string2 <- DNAString(paste(sample(DNA_ALPHABET[1:4],
+                   N[i], replace = TRUE), collapse = ""))

+   timings[i] <- system.time(pairwiseAlignment(string1, string2, 
+                                             type = "global"))[["user.self"]]

+ }
> timings
 500  1000  1500  2000  2500  3000  3500  4000  4500  5000
1.30   1.14   1.28    1.51   1.83   2.21   2.63   3.13   4.00   4.32
> coef(summary(lm(timings ~ poly(N, 2))))
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.3350000 0.03749756 62.27072 7.233546e-11

poly(N, 2)1 3.3133505 0.11857770 27.94244 1.931364e-08

poly(N, 2)2 0.9582975 0.11857770 8.08160 8.542526e-05
> plot(N, timings, xlab = "String Size, Both Strings",
+ ylab = "Timing (sec.)", type = "l",

+ main = "Global Pairwise Sequence Alignment Timings")
> # Outputting: Figure 49.
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Figure 49 Bioconductor (PairwiseAlignments)-2.
> #######################################

> ### code chunk number 26: profiling2

> #######################################
> scoreOnlyTimings <- rep(0, length(N))
> names(scoreOnlyTimings) <- as.character(N)
> for (i in seq_len(length(N))) {

+   string1 <- DNAString(paste(sample(DNA_ALPHABET[1:4],
+                   N[i], replace = TRUE), collapse = ""))

+   string2 <- DNAString(paste(sample(DNA_ALPHABET[1:4],
+                   N[i], replace = TRUE), collapse = ""))

+   scoreOnlyTimings[i] <- system.time(pairwiseAlignment(string1, 
+             string2, type = "global", scoreOnly = TRUE))[["user.self"]]

+ }
> scoreOnlyTimings
 500  1000  1500  2000  2500  3000  3500  4000  4500  5000
1.00   1.06    1.18   1.42   1.66   1.95   2.34   2.74   3.21   3.76
> round((timings - scoreOnlyTimings) / timings, 2)
 500  1000  1500  2000  2500  3000  3500  4000  4500  5000
0.23    0.07   0.08   0.06   0.09   0.12   0.11   0.12   0.20   0.13
> #######################################

> ### code chunk number 27: doal

> #######################################
> file <- system.file("extdata", "someORF.fa",
+                              package="Biostrings")
> orf <- read.DNAStringSet(file)
> orf
A DNAStringSet instance of length 7 

width
seq
names

[1]
5573
ACTTGTAAATATATCTTTT...TCGACCTTATTGTTGATAT
YAL001C
TFC3
SGDI...

[2]
5825
TTCCAAGGCCGATGAATTC...AATTTTTTTCTATTCTCTT
YAL002W
VPS8
SGDI...

[3]
2987
CTTCATGTCAGCCTGCACT...ACTCATGTAGCTGCCTCAT
YAL003W
EFB1
SGDI...

[4]
3929
CACTCATATCGGGGGTCTT...CCGAAACACGAAAAAGTAC
YAL005C
SSA1
SGDI...

[5]
2648
AGAGAAAGAGTTTCACTTC...AATTTATGTGTGAACATAG
YAL007C
ERP2
SGDI...

[6]
2597
GTGTCCGGGCCTCGCAGGC...TTTGGCAGAATGTACTTTT
YAL008W
FUN14
SGD...

[7]
2780
CAAGATAATGTCAAAGTTA...AGGAAGAAAAAAAAATCAC
YAL009W
SPO7
SGDI...
> orf10 <- DNAStringSet(orf, end=10)
> consensusMatrix(orf10, as.prob=TRUE, baseOnly=TRUE)

[,1]
[,2]
[,3]
[,4]
[,5]
[,6]

A
0.2857143
0.2857143
0.2857143
0.0000000
0.5714286
0.4285714

C
0.4285714
0.1428571
0.2857143
0.2857143
0.2857143
0.1428571

G
0.1428571
0.1428571
0.1428571
0.2857143
0.1428571
0.0000000

T
0.1428571
0.4285714
0.2857143
0.4285714
0.0000000
0.4285714

other
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

[,7]
[,8]
[,9]
[,10]

A
0.4285714
0.4285714
0.2857143
0.1428571

C
0.0000000
0.0000000
0.2857143
0.4285714

G
0.4285714
0.4285714
0.1428571
0.2857143

T
0.1428571
0.1428571
0.2857143
0.1428571

other
0.0000000
0.0000000
0.0000000
0.0000000
> #######################################

> ### code chunk number 28: infco

> #######################################
> informationContent <- function(Lmers) {

+        zlog <- function(x) ifelse(x==0,0,log(x))

+          co <- consensusMatrix(Lmers, as.prob=TRUE)

+         lets <- rownames(co)

+            fr <- alphabetFrequency(Lmers, collapse=TRUE)[lets]

+            fr <- fr / sum(fr)

+         sum(co*zlog(co/fr), na.rm=TRUE)

+ }
> informationContent(orf10)
[1] 2.167186
> #######################################

> ### code chunk number 29: ans1a

> #######################################
> pairwiseAlignment("zyzzyx", "syzygy")
Global PairwiseAlignedFixedSubject (1 of 1)

pattern: [1] zyzzyx
subject: [1] syzygy
score: -19.3607
> pairwiseAlignment("zyzzyx", "syzygy", type = "local")
Local PairwiseAlignedFixedSubject (1 of 1)

pattern: [2] yz
subject: [2] yz
score: 4.607359
> pairwiseAlignment("zyzzyx", "syzygy", type = "overlap")
Overlap PairwiseAlignedFixedSubject (1 of 1)

pattern: [1] ""

subject: [1] ""

score: 0
> #######################################

> ### code chunk number 30: ans1b

> #######################################
> pairwiseAlignment("zyzzyx", "syzygy", type = "overlap",
+ gapExtension = -Inf)
Overlap PairwiseAlignedFixedSubject (1 of 1)

pattern: [1] ""

subject: [1] ""

score: 0
> #######################################

> ### code chunk number 31: ans2a

> #######################################
> ex2 <- summary(pairwiseAlignment("zyzzyx", "syzygy"))
> nmatch(ex2) / nmismatch(ex2)
[1] 0.5
> #######################################

> ### code chunk number 32: ans3

> #######################################
> ex3 <- pairwiseAlignment("zyzzyx", "syzygy", type = "overlap")
> #######################################

> ### code chunk number 33: ans3a

> #######################################
> nmatch(ex3)
[1] 0
> nmismatch(ex3)
[1] 0
> #######################################

> ### code chunk number 34: ans3b

> #######################################

> compareStrings(ex3)
[1] ""
> #######################################

> ### code chunk number 35: ans3c

> #######################################
> as.character(ex3)
[1] "------"
> #######################################

> ### code chunk number 36: ans3d

> #######################################
> mismatch(pattern(ex3))
CompressedIntegerList of length 1

[[1]] integer(0)
> #######################################

> ### code chunk number 37: ans3e

> #######################################
> aligned(subject(ex3))
A BStringSet instance of length 1

width
seq

[1]
0
> #######################################

> ### code chunk number 38: ans4a

> #######################################
> submat <- matrix(-1, nrow = 26, ncol = 26,
+                               dimnames = list(letters, letters))
> diag(submat) <- 0
> - pairwiseAlignment("zyzzyx", "syzygy",
+            substitutionMatrix = submat,

+            gapOpening = 0, gapExtension = -1, scoreOnly = TRUE)
[1] 4
> #######################################

> ### code chunk number 39: ans4b

> #######################################
> stringDist(c("zyzzyx", "syzygy", "succeed", "precede",
+ "supersede"))

1
2
3
4

2
4
3
7
6
4
7
7
5
5
9
8
5
5
> #######################################

> ### code chunk number 40: ans5a

> #######################################
> data(BLOSUM62)
> pairwiseAlignment(AAString("PAWHEAE"),
+ AAString("HEAGAWGHEE"), substitutionMatrix = BLOSUM62,

+                       gapOpening = -12, gapExtension = -4)
Global PairwiseAlignedFixedSubject (1 of 1)

pattern: [1] P---AWHEAE
subject: [1] HEAGAWGHEE
score: -9
> #######################################

> ### code chunk number 41: ans6a

> #######################################
> adapter <-
+ DNAString("GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA")
> set.seed(123)
> N <- 1000
> experiment <- list(side = rbinom(N, 1, 0.5), width =
+                               sample(0:36, N, replace = TRUE))
> table(experiment[["side"]], experiment[["width"]])
      0    1   2     3    4     5  6    7    8    9  10  11  12  13  14  15  16  17  18  19  20  21
0  13  10   8     7   11  18  9  15  15  18  16  10  11    9  13  13  18  18  14    9  19  13
1  15  21  21  12  17  14  8   11  12  10  14  16   7   14  19  14  14  16  14  16  16  16
    22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
0  19  19  12    6  15  18  12  15  16  17  19    6  13  18  15
1  13  11    9  11  15  10  10  16  15  15  11    7  12    7  14
> ex6Strings <- simulateReads(N, adapter, experiment,
+ substitutionRate = 0.005, gapRate = 0.0005)
> ex6Strings <- DNAStringSet(ex6Strings)

> ex6Strings
A DNAStringSet instance of length 1000


width
seq

[1]
36
CTGCTTGAAATTGCACGATAGTTGCATATGCTACAA

[2]
36
ATTTCTCCTTCTCAGGATCGGAAGAGCTCGTATGCC

[3]
36
TGAAAGAAGGTAATTTGATTAAGCCCTTCGCAAAAC

[4]
36
CAAACGATCGGAAGAGCTCGTATGCCGTCTTCTGCT

[5]
36
TCTCAGATCGGAAGAGCTCGTATGCCGTCTTCTGCT

[6]
36
CCGTCTTCTGCTTGAAACGTGAACAGGACAATGGCC

[7]
36
GGAAGCCAGATCGTAAGAGCTCGTATGCCGTCTTCT

[8]
36
CGGGTCCTGGTCCTGGGGCCATCCATGATCGGAAGA

[9]
36
TGGCACATCGCAGCTAAATCGACAGTACTATCATGA

...
...
...

[992]
36
TTGAAAAATTAGGCCATGGCCACGGCGTATTCAACC

[993]
36
AACATGATCGGAAGAGCTCGTATGCCGTCTTCTGCT

[994]
36
TGAAACATTCAGCGTAAGCTGCTTAACGGTTTAGAC

[995]
36
ACTCGGGATCATCGGAAACGATAAGAACGTTGAGAT

[996]
36
TACGATCGGAAGCGCTCGTATGCCGTCTTCTGCTTG

[997]
36
TCATTGACATTACACAGCCTACTAGGATCGGAAGAG

[998]
36
AGCTCGTATGCCGTCTTCTGCTTGAAACATGTTTCA

[999]
36
CCGTAATTAGTTCCTACAGATCGATCGGAAGAGCTC

[1000]
36
CGTCTTCTGCTTGAAACGGCACACCTCAACGGGGAA
> ## Method 1: Use edit distance with an FDR of 1e-03
> submat1 <- nucleotideSubstitutionMatrix(match = 0,
+                     mismatch = -1, baseOnly = TRUE)
> quantile(randomScores1, seq(0.99, 1, by = 0.001))
99%  99.1%  99.2%  99.3%  99.4%  99.5%  99.6%  99.7%  99.8%  99.9%  100%
  -16      -16      -16       -16      -16       -16       -16      -16       -16      -15       -14
> ex6Aligns1 <- pairwiseAlignment(ex6Strings, adapter,
+                        substitutionMatrix = submat1,

+                        gapOpening = 0, gapExtension = -1)
> table(score(ex6Aligns1) > quantile(randomScores1, 0.999),
+                                              experiment[["width"]])
              0    1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20

FALSE  28  31  29  19  28  32  17  26  27  28  30  26  18  23  32  27  32  34  28  25  35
TRUE      0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
            21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36

FALSE  29  32  30  21  17  30  28  22    4    0    0    0    0    0    0    0
TRUE      0    0    0    0    0    0    0   0   27  31  32  30  13  25  25  29
> ## Method 2: Use consecutive matches anywhere in string
+                          with an FDR of 1e-03
> submat2 <- nucleotideSubstitutionMatrix(match = 1,
+                     mismatch = -Inf, baseOnly = TRUE)
> quantile(randomScores2, seq(0.99, 1, by = 0.001))
  99%  99.1%  99.2%  99.3%  99.4%  99.5%  99.6%  99.7%  99.8%  99.9%    100%

7.000   8.000   8.000   8.000  8.000   8.000   8.000   8.000   9.000  9.001  11.000
> ex6Aligns2 <- pairwiseAlignment(ex6Strings, adapter,
+                        substitutionMatrix = submat2,

+                        type = "local", gapOpening=0,gapExtension=-Inf)

> table(score(ex6Aligns2) > quantile(randomScores2, 0.999),
+                                                        experiment[["width"]])
              0    1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20
FALSE  28  31  29  19  28  32  17  26  27  28    1    0    1    0    0    1    0    0    0    0    0
TRUE      0    0    0    0    0    0    0    0    0    0  29  26  17  23  32  26  32  34  28  25  35
            21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
FALSE    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
TRUE    29  32  30  21  17  30  28  22  31  31  32  30  13  25  25  29
> # Determine if the correct end was chosen
> table(start(pattern(ex6Aligns2))>37– end(pattern(ex6Aligns2)),

+                                                          experiment[["side"]])
                0      1
FALSE  475    57
TRUE      32  436
> ## Method 3: Use consecutive matches on the ends with an
+                          FDR of 1e-03
> submat3 <- nucleotideSubstitutionMatrix(match = 1,
+                     mismatch = -Inf, baseOnly = TRUE)
> ex6Aligns3 <- pairwiseAlignment(ex6Strings, adapter,
+                        substitutionMatrix = submat3, type = "overlap", 
+                        gapOpening = 0, gapExtension = -Inf)
> table(score(ex6Aligns3) > quantile(randomScores3, 0.999),
+                                              experiment[["width"]])
              0    1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20
FALSE  28  31  29  19  28  32    1    0    1    4    1    0    1    2    0    2    5    1    5    1    2
TRUE      0    0    0    0    0    0  16  26  26  24  29  26  17  21  32  25  27  33  23  24  33
          21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
FALSE  5    1    3    1    3    0    4    3    5    2   2    1    3    2    2     6
TRUE  24  31  27  20  14  30  24  19  26  29  30  29  10  23  23  23
> # Determine if the correct end was chosen
> table(end(pattern(ex6Aligns3)) == 36, experiment[["side"]])
                0      1
FALSE  479    39
TRUE      28  454
> ## Method 4: Allow mismatches and indels on the ends with
+                          an FDR of 1e-03
> quantile(randomScores4, seq(0.99, 1, by = 0.001))
        99%       99.1%       99.2%       99.3%       99.4%        99.5%       99.6%
7.927024  7.927024  7.927024  7.927024  7.927024  7.927024  7.973007
     99.7%        99.8%      99.9%          100%
9.908780  9.908780  9.908780  11.890536
> ex6Aligns4 <- pairwiseAlignment(ex6Strings, adapter,
+                                                           type = "overlap")
> table(score(ex6Aligns4) > quantile(randomScores4, 0.999),
+                                                             experiment[["width"]])
              0    1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20
FALSE  28  31  29  19  28  32    1    0    1    0    0    0    0    0    0    0    0    0    0    0    0
TRUE      0    0    0    0    0    0  16  26  26  28  30  26  18  23  32  27  32  34  28  25  35
            21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
FALSE    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
TRUE    29  32  30  21  17  30  28  22  31  31  32  30  13  25  25  29
> # Determine if the correct end was chosen
> table(end(pattern(ex6Aligns4)) == 36, experiment[["side"]])
                0      1
FALSE  486    17
TRUE      21  476
> #######################################

> ### code chunk number 42: ans6b

> ######################################
> simulateReads <-

+ function(N, left, right = left, experiment, substitutionRate
+                  = 0.01, gapRate = 0.001) {

+    leftChars <- strsplit(as.character(left), "")[[1]]

+    rightChars <- strsplit(as.character(right), "")[[1]]

+    if (length(leftChars) != length(rightChars))

+      stop("left and right adapters must have the same number of + characters")

+    nChars <- length(leftChars)

+    sapply(seq_len(N), function(i) {

+                                                     width <- experiment[["width"]][i]

+                                                     side <- experiment[["side"]][i]

+      randomLetters <-

+      function(n) sample(DNA_ALPHABET[1:4], n, replace = TRUE)
+      randomLettersWithEmpty <-

+         function(n)

+         sample(c("", DNA_ALPHABET[1:4]), n, replace = TRUE,

+                       prob = c(1 - gapRate, rep(gapRate/4, 4)))

+         if (side) {value <-

+           paste(ifelse(rbinom(nChars,1,substitutionRate),
+                      randomLetters(nChars), rightChars),

+                      randomLettersWithEmpty(nChars),

+                      sep = "", collapse = "")

+           value <-

+           paste(c(randomLetters(36 - width), substring(value, 1,
+                          width)), sep = "", collapse = "")

+     } else {

+       value <-

+           paste(ifelse(rbinom(nChars,1,substitutionRate),
+                      randomLetters(nChars), leftChars),

+                      randomLettersWithEmpty(nChars),

+                      sep = "", collapse = "")

+       value <- paste(c(substring(value, 37 - width, 36),
+                                     randomLetters(36 - width)),

+                                     sep = "", collapse = "")

+      }

+       value

+   })

+ }

>
> leftAdapter <- adapter
> rightAdapter <- reverseComplement(adapter)
> ex6LeftRightStrings <- simulateReads(N, leftAdapter,
+                                                                  rightAdapter, experiment)
> ex6LeftAligns4 <- pairwiseAlignment(ex6LeftRightStrings,
+                              leftAdapter, type = "overlap")
> ex6RightAligns4 <- pairwiseAlignment(ex6LeftRightStrings,
+ rightAdapter, type = "overlap")
> scoreCutoff <- quantile(randomScores4, 0.999)
> leftAligned <-

+   start(pattern(ex6LeftAligns4)) == 1 & score(ex6LeftAligns4)
> pmax(scoreCutoff, score(ex6RightAligns4))
> rightAligned <-

+ end(pattern(ex6RightAligns4)) == 36 & score(ex6RightAligns4)
> pmax(scoreCutoff, score(ex6LeftAligns4))
> table(leftAligned, rightAligned)

rightAligned

leftAligned

FALSE
TRUE

FALSE
171
392

TRUE
437
0
> table(leftAligned | rightAligned, experiment[["width"]])
              0    1    2    3    4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20
FALSE  28  31  29  19  28  31    1    2    1    1    0    0    0    0    0    0    0    0    0    0    0
TRUE      0    0    0    0    0    1  16  24  26  27  30  26  18  23  32  27  32  34  28  25  35
            21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
FALSE    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
TRUE    29  32  30  21  17  30  28  22  31  31  32  30  13  25  25  29
> #######################################

> ### code chunk number 43: ans7a

> #######################################
> genBankFullAlign <-

+   pairwiseAlignment(srPhiX174, genBankPhage,

+                          patternQuality = SolexaQuality(quPhiX174),

+                          subjectQuality = SolexaQuality(99L),

+                          type = "global-local")
> summary(genBankFullAlign, weight = wtPhiX174)
Global-Local Fixed Subject Pairwise Alignment

Number of Alignments: 53802
Scores:
Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
-45.08
56.72
59.89
60.59
69.56
69.85
Number of matches:
Min.
1st Qu.
Median
Mean
3rd Qu.
Max.
24.00
33.00
34.00
34.01
35.00
35.00
Top 10 Mismatch Counts:

SubjectPosition
Subject
Pattern
Count
Probability

1
2811
C
T
22965
0.999912919

2
2793
C
T
22845
0.999693681

3
2834
G
T
1985
0.106800818

4
2835
G
T
605
0.033570081

5
2829
G
T
489
0.023314580

6
2782
G
T
325
0.013882363

7
2839
A
T
287
0.018648473

8
2807
A
C
169
0.007657801

9
2827
A
T
168
0.007714207

10
2837
C
T
159
0.009612478
> #######################################

> ### code chunk number 44: ans7b

> #######################################
> genBankFullCoverage <- coverage(genBankFullAlign,
+                                                                weight = wtPhiX174)
> plot(as.integer(genBankFullCoverage), xlab = "Position", ylab 
+                                                                      = "Coverage", type = "l")
> # Outputting: Figure 50.
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Figure 50 Bioconductor (PairwiseAlignments)-3.
> slice(genBankFullCoverage, lower = 1)
Views on a 5386-length Rle subject
views:
      start   end  width

[1]  1195  1230      36 [2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ...]

[2]  2514  2548      35 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...]

[3]  2745  2859    115 [416 946 1536 2135 2797 3374 4011 ...]

[4]  3209  3247      39 [  32   54   440 1069 1130 1130 1130 1130 ...]

[5]  3964  3998      35 [9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 ...]
> #######################################

> ### code chunk number 45: ans7c

> #######################################
> genBankFullAlignRevComp <- pairwiseAlignment(srPhiX174,
+                                                  reverseComplement(genBankPhage),

+                         patternQuality = SolexaQuality(quPhiX174),

+                         subjectQuality = SolexaQuality(99L),

+                         type = "global-local")

> table(score(genBankFullAlignRevComp) >
+                                                                         score(genBankFullAlign))
FALSE   TRUE
  1112          1
> #######################################

> ### code chunk number 46: ans8a

> #######################################
> N <- as.integer(seq(5000, 50000, by = 5000))
> newTimings <- rep(0, length(N))
> names(newTimings) <- as.character(N)
> for (i in seq_len(length(N))) {

+   string1 <- DNAString(paste(sample(DNA_ALPHABET[1:4], 35, 
+                   replace = TRUE), collapse = ""))

+   string2 <- DNAString(paste(sample(DNA_ALPHABET[1:4],
+                   N[i], replace = TRUE), collapse = ""))

+   newTimings[i] <- system.time(pairwiseAlignment(string1,

+                                string2, type = "global"))[["user.self"]]

+ }
> newTimings
5000  10000  15000  20000  25000  30000  35000  40000  45000  50000
  1.03     1.01     1.05     1.03     1.10     1.12      1.11    1.22  1.23        1.17
> coef(summary(lm(newTimings ~ poly(N, 2))))

Estimate
Std. Error
t value
Pr(>|t|)

(Intercept)
1.107000000
0.01206575
91.7473239
4.813913e-12

poly(N, 2)1
0.215238416
0.03815524
5.6411230
7.816683e-04

poly(N, 2)2
0.009574271
0.03815524
0.2509294
8.090751e-01
> plot(N, newTimings, xlab = "Larger String Size",
+ ylab = "Timing (sec.)", type = "l",
+ main = "Global Pairwise Sequence Alignment Timings")

> # Outputting: Figure 51.
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Figure 51 Bioconductor (PairwiseAlignments)-4.
> #######################################

> ### code chunk number 47: ans8b

> #######################################
> newScoreOnlyTimings <- rep(0, length(N))
> names(newScoreOnlyTimings) <- as.character(N)
> for (i in seq_len(length(N))) {

+     string1 <- DNAString(paste(sample(DNA_ALPHABET[1:4], 35,
+                      replace = TRUE), collapse = ""))

+     string2 <- DNAString(paste(sample(DNA_ALPHABET[1:4],N[i], 
+                      replace = TRUE), collapse = ""))

+     newScoreOnlyTimings[i] <-

+ system.time(pairwiseAlignment(string1, string2,

+ type = "global", scoreOnly = TRUE))[["user.self"]]

+ }
> newScoreOnlyTimings
5000  10000  15000  20000  25000  30000  35000  40000  45000  50000
  1.01     0.99     1.05     1.03     1.01     1.06      1.11    1.06     1.12     1.14
> round((newTimings - newScoreOnlyTimings) / newTimings, 2)
5000  10000  15000  20000  25000  30000  35000  40000  45000  50000
  0.02    0.02      0.00     0.00     0.08     0.05     0.00     0.13     0.09     0.03
> #######################################

> ### code chunk number 48: sessinfo

> #######################################
> toLatex(sessionInfo())
\begin{itemize}\raggedright
  \item R version 2.14.2 (2012-02-29), \verb|i386-pc-mingw32|
  \item Locale: \verb|LC_COLLATE=English_United States.1252|, \verb|LC_CTYPE=English_United States.1252|, \verb|LC_MONETARY=English_United States.1252|,

\verb|LC_NUMERIC=C|, \verb|LC_TIME=English_United States.1252|
  \item Base packages: base, datasets, graphics, grDevices,
    methods, stats, utils
  \item Other packages: annotate~1.32.3, AnnotationDbi~1.16.19,
    Biobase~2.14.0, Biostrings~2.22.0, cluster~1.14.2,
    golubEsets~1.4.10, IRanges~1.12.6, MASS~7.3-17, XML~3.9-4.1
  \item Loaded via a namespace (and not attached): DBI~0.2-5,
    RSQLite~0.11.1, toolo s~2.14.2, xtable~1.7-0

\end{itemize}
>
With respect to the about program in R computing in the Pairwise.Alignments program, taken from the Bioconductor package: www.bioconductor.org/packages/2.10/bioc/.../PairwiseAlignments.R Cached
(a) 
 What are the functions of each line of R code-segment in the above sample R program?

(b)
Re-run the above code-segment in an R environment.
6.
Simultaneous Biomolecular Reaction and Transport

In the CRAN package ReacTran,[24,28] the function tran.volume.1D() may be used to compute one-dimensional volumetric diffusive-advective transport in an aquatic system. This function estimates the volumetric transport diffusive-advective term (i.e. the rate of change of the concentration owing to diffusion and advection) in a one-dimensional model of an aquatic system (e.g., in a river flowing into an estuary out to sea). Volumetric transport calls for the use of flows (mass per unit of time) rather than fluxes (mass per unit of area per unit of time) as is done in tran.1D().
The function tran.volume.1D() routine may be used for modeling channels where the cross-sectional area changes, but where this area change needs not to be explicitly modeled as such. Another difference with tran.1D() is that the present function allows lateral water or lateral mass input.
The usage formula of this function is:
tran.volume.1D(C, C.up = C[1], C.down = C[length(C)],
C.lat = C, F.up = NULL, F.down = NULL, F.lat = NULL,
Disp,flow = 0, flow.lat = NULL, AFDW = 1,
V = NULL, full.check = FALSE, full.output = FALSE)
for which the arguments are:
C
tracer concentration, defined at the center of the grid cells. A vector of length N [M/L3].

C.up
tracer concentration at the upstream interface. One value [M/L3].

C.down
tracer concentration at downstream interface. One value [M/L3].

C.lat
tracer concentration in the lateral input, defined at grid cell centers.
F.up
total tracer input at the upstream interface. One value [M/T].

F.down
total tracer input at downstream interface. One value [M/T].

F.lat
total lateral tracer input, defined at grid cell centers.
Disp
BULK dispersion coefficient, defined on grid cell interfaces.
flow
water flow rate, defined on grid cell interfaces.
flow.lat
lateral water flow rate [L3/T] into each volume box, defined at grid cell centers.

AFDW
weight used in the finite difference scheme for advection, defined on grid cell interfaces; backward = 1, centered = 0.5, forward = 0; default is backward.
V
grid cell volume, defined at grid cell centers [L3].
full.check
logical flag enabling a full check of the consistency of the arguments (default =FALSE; TRUE slows down execution by 50 percent).

full.output
logical flag enabling a full return of the output (default = FALSE; TRUE slows down execution by 20 percent).
The boundary conditions are of type

 SHAPE  \* MERGEFORMAT 



zero-gradient (default)

 SHAPE  \* MERGEFORMAT 



fixed concentration

 SHAPE  \* MERGEFORMAT 



fixed input
The bulk dispersion coefficient (Disp) and the flow rate (flow) may be either one value or a vector of length N+1, defined at all grid cell interfaces, including upstream and downstream boundary. The spatial discretization is controlled by the \volume of each box (V), which may be one value or a vector of length N+1, defined at the centre of each grid cell. The water flow is mass conservative. Over each volume box, the program calculates internally the downstream outflow of water in terms of the upstream inflow and the lateral inflow.
Results:

dC
the rate of change of the concentration C due to transport, defined in the center of each grid cell [M/L3/T].

F.up
mass flow across the upstream boundary, positive = INTO model domain. One value [M/T].

F.down
mass flow across the downstream boundary, positive = OUT of model domain. One value [M/T].

F.lat
lateral mass input per volume box, positive = INTO model domain.
flow
water flow across the interface of each grid cell.
flow.up
water flow across the upstream (external) boundary.

flow.down
water flow across the downstream (external) boundary.

flow.lat
lateral water input on each volume box, positive = INTO model domain.
F
mass flow across at the interface of each grid cell. 
The R code-segments in the following worked example uses the above function to compute the Organic Carbon (OC) decay in a widening estuary
# Two scenarios are simulated: the baseline includes only input of organic matter upstream. 
# The second scenario simulates the input of an important side river half way the estuary.
#====================#

# Model formulation #

#====================#
> install.packages("ReacTran")
> library(ReacTran)

Loading required package: rootSolve

Loading required package: deSolve

Loading required package: shape
> ls("package:ReacTran")
[1]
"advection.1D"
"advection.volume.1D"
"fiadeiro"
[4]
"g.cylinder"
"g.sphere"
"g.spheroid"
[7]
"p.exp"
"p.lin"
"p.sig"
[10]
"polar2cart"
"setup.compaction.1D"
"setup.grid.1D"
[13]
"setup.grid.2D"
"setup.prop.1D"
"setup.prop.2D"
[16]
"tran.1D"
"tran.2D"
"tran.3D"
[19]
"tran.cylindrical"
"tran.polar"
"tran.spherical"
[22]
"tran.volume.1D"
> ## ==================================================
> ## EXAMPLE : organic carbon (OC) decay in a widening estuary
>##===================================================
> # Two scenarios are simulated: the baseline includes only input of organic matter 
> # upstream. The second scenario simulates the input of an important side river 

> # half way the estuary.
> #====================#

> # Model formulation         #

> #====================#
> river.model <- function (t = 0, OC, pars = NULL) {

+ tran <- tran.volume.1D(C = OC, F.up = F.OC, F.lat = F.lat,

+ Disp = Disp, flow = flow.up, flow.lat = flow.lat,

+ V = Volume, full.output = TRUE)

+ reac <- - k*OC

+ return(list(dCdt = tran$dC + reac, Flow = tran$flow))

+ }
> #======================#

> # Parameter definition         #

> #======================#
> # Initialising morphology estuary:
> nbox <- 500 # number of grid cells
> lengthEstuary <- 100000 # length of estuary [m]
> BoxLength <- lengthEstuary/nbox # [m]
> Distance <- seq(BoxLength/2, by=BoxLength, len =nbox) # [m]
> Int.Distance <- seq(0, by = BoxLength, len = (nbox+1)) # [m]
> # Cross sectional area: sigmoid function of estuarine distance 
+ # [m2]
> CrossArea <- 4000 + 72000 * Distance^5
+ /(Distance^5+50000^5)
> # Volume of boxes (m3)
> Volume <- CrossArea*BoxLength
> # Transport coefficients
> Disp <- 1000 # m3/s, bulk dispersion coefficient
> flow.up <- 180 # m3/s, main river upstream inflow
> flow.lat.0 <- 180 # m3/s, side river inflow
> F.OC <- 180 # input organic carbon [mol s-1]
> F.lat.0 <- 180 # lateral input organic carbon [mol s-1]
> k <- 10/(365*24*3600) # decay constant organic carbon [s-1]
> #====================#

> # Model solution #

> #====================#
> #scenario 1: without lateral input
> F.lat <- rep(0, length.out = nbox)
> flow.lat <- rep(0, length.out = nbox)
> Conc1 <- steady.1D(runif(nbox), fun = river.model, nspec = 1,
+ name = "OC")
> #scenario 2: with lateral input
> F.lat <- F.lat.0 * dnorm(x =Distance/lengthEstuary,

+             mean = Distance[nbox/2]/lengthEstuary,

+             sd = 1/20, log = FALSE)/nbox
> flow.lat <- flow.lat.0 * dnorm(x = Distance/lengthEstuary,

+                   mean = Distance[nbox/2]/lengthEstuary,

+                   sd = 1/20, log = FALSE)/nbox
> Conc2 <- steady.1D(runif(nbox), fun = river.model, nspec = 1, 
+                  name = "OC")
> #====================#

> # Plotting output #

> #====================#
> # use S3 plot method
> plot(Conc1, Conc2, grid = Distance/1000, which = "OC",

+ mfrow = c(2, 1), lwd = 2, xlab = "distance [km]",

+ main = "Organic carbon decay in the estuary",

+ ylab = "OC Concentration [mM]")
> # Outputting: Figure 52A (Top Plot).
> plot(Conc1, Conc2, grid = Int.Distance/1000, which = "Flow",

+ mfrow = NULL, lwd = 2, xlab = "distance [km]",

+ main = "Longitudinal change in the water flow rate",

+ ylab = "Flow rate [m3 s-1]")

> # Outputting: Figure 52A (Bottom Plot).
> legend ("topright", lty = 1:2, col = 1:2, lwd = 2,

+ c("baseline", "+ side river input"))

> # Outputting: Figure 52A (Bottom Plot).
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Figure 52A Simultaneous biomolecular reaction and transport using the function tran.volume.1D() in the CRAN package ReacTran[24,30] to compute one-dimensional volumetric diffusive-advective transport in an aquatic system.
With respect to the above program in R computing using the function tran.volume.1D() in the In the CRAN package ReacTran,
(a)
 What are the functions of each line of R code-segment in the above sample R program?

(b)
Re-run the above code-segment in an R environment.
7.
Adventist Health Studies-2 (AHS-2) and the Analysis of Systematic Errors in the Dependent Variables of Regression Analyses.

(Interest on this aspect of AHS-2 has been derived from a discussion with Professor G. E. Fraser, the Principal Investigator of these studies.)

In the collection and analysis of vast amounts of longitudinal survey data in the AHS-2 program, it may necessary to consider the effects of systematic errors in the dependent variables of regression analyses. Such errors are likely to be systematic because random errors in dependent variables do not create bias in common forms of regression. A common example may be found is when an epidemiologic study has gathered survey data from subjects (including physician-supervised) about a clinical diagnosis. This may be a binary variable (Yes/No) about some disease, or even continuous measures, such as cholesterol levels, body weight, or of blood pressure levels. These variables contained errors of variable magnitude, depending on the particular disorder. Such errors may not be random, and may depend on the value of some exposure variables that the investigator is trying to relate to the risks of the disorders.
A critical question may well be: “Could the deficiencies in the self-reported data shortcomings be dealt with in some biostatistical way, so formally correcting biases that result from the measurement error as part of the analysis?
The Methods of Regression Calibration (RC)
For a linear regression, the dependent variable in linear regression is usually continuous, and if not normally distributed, can often be transformed to approximate normality. The methods require a calibration sub-study that has available the true dependent variable, Y, and the observed value measured with error, y, along with other covariates. Let X be a vector of other covariates that are measured without error.

Then, a regression calibration equation for the dependent variable is
Y = αC + βC1y + βC2X + εC
and these coefficients may be estimated in the calibration data. For the whole study population the true regression of interest is
Y = αT + βT X + εT
and the corresponding observed regression is
Y = αS + βSX + εS
Also, there is a calibrated regression with dependent variable E(Y|y, X), which is found from the calibration equation. This calibrated regression is
E(Y|y, X) = αcalib + βcalibX + εcalib,
where E(βcalib) = βT. Note that the calibration equation allows the error (Y – y) to depend on X as well as on y.
In the case of lack of bias in the univariate calibrated regression, using the least squares estimator for βcalib,
βcalib = Cov(E(Y| y, X), X)/σ2X
= [βC1Cov(y, X) + βC2σ2X]/σ2X
= βC1βS + βC2
= βC1Cov(Y – εC – βC2X – αC, X)/(βC1σ2X) + βC2
= Cov(Y, X)/σ2X
= βT
as hoped, noting that Cov(εC, X) = 0.
Thus the substitution of E(Y| y, X) for Y produces βcalib, which is an unbiased estimator of βT, whereas the result, βS, using observed data y, is biased unless βS = βC2/(1 – βC1). In another special case where the systematic error in Y depends only on y, βC2 = 0, the calibrated beta is still unbiased, and βS is still always biased.
For the lack of bias in the multivariate case, multiple X variables do not change the basic result above. Where εC is the vector of calibration equation errors, and βT is the vector of true coefficients, the multivariate calibrated regression is
βcalib = [X'X]-1[X'E(Y|y, X)] = [X'X]-1[X'(Y – εC)] = [X'X]-1[X'Y] = βT, as [X'εC] = 0.
Method of Multiple Imputation for Dependent Error Analysis

Let Y be the disease variable such that Y is either:
(a)
continuous, as for a disease marker, or
(b)
a binary, as for a disease indicator.
Let X be the exposure variables of interest.
One would like to measure X exactly, but that is not readily possible. Instead one measures Z, which is X-with-the-error.
The statistical models linking Y, X, and Z will consist of two parts:
1.
the disease model linking Y and X, and
2.
the measurement error model linking X and Z.
When the measurement error is differential, then the latter model will also include Y .
Express the disease model as
E(Y |X) = h(β0 + βXX) …………...………….… (MI-1)
where h is either
(i)
the identity function when Y is continuous, or
(ii)
the logistic function when Y is binary.
The aim is to estimate βX as well as possible.
Expressing the non-differential measurement error model as
Z = γ0 + γX X + δ …………………………… (MI-2)
where δ is a residual error with zero expectation that is independent of X and Y . Such a model is known as the non-classical measurement error model to distinguish it from the classical measurement error model where γ0 = 0 and γX =1.
Later, calibration studies will be conducted to estimate the parameters of model (MI-2), which need to be known in order to implement the three statistical methods under study.

Also considered will be differential measurement error models where equation (MI-2) will include some dependence of Z on Y .
Regression Calibration

One first estimates the quantity
XRC(Z) = E(X|Z) ………………………………. (MI-3)
and then substitute this quantity into the regression model (MI-1) in place of the unknown X, so as to estimate βX . Under the assumption of non-differential measurement error (i.e. f [Y |X,Z] = f [Y |X]), the error term δ in (MI-2) is independent of Y, and the resulting estimate of βX is known[30] to be consistent for linear regression, and inconsistent, but usually with small bias, for logistic regression. The non-differential measurement error assumption is critical here and RC will often give highly biased estimates if this assumption is violated. Standard errors for the estimate of βX are most easily found by bootstrap methods, although the stacking equations method may be used at the cost of some algebraic and programming work .
Moment Reconstruction

The quantity XMR(Z,Y) is constructed so that its first two moments joint with Y are the same as the first two moments of (X,Y). The expression for XMR(Z,Y) may be taken as [31]:
XMR(Z,Y) = E(Z|Y)+G{Z −E(Z|Y)} ………….… (MI-3a)
where G ={cov(X|Y)}1/2{cov(Z|Y)}−1/2 ………. (MI-3b)
However, this expression was based on the assumption that Z follows a classical measurement error model, in which case E(X|Y) = E(Z|Y). For nonclassical measurement error E(X|Y) ≠ E(Z|Y), so that a modification of the expression for XMR(Z,Y) is needed so as to preserve the first-moment relationship E[XMR(Z,Y)] = E(X). This is achieved by modifying the definition to
XMR(W,Y) = E(X|Y) + G{Z − E(Z|Y)} …………..… (MI-4)
with G defined exactly as before, from which the desired equality of the first two moments follows immediately on taking expectations conditional on Y .
Implementation
Implementation of the methods requires estimation of the measurement error for the model parameters, based on a calibration study, in which one considers the case of an internal calibration study, where the subjects are a random sample of those in the main study sample. Assume that there is a single explanatory variable X that is measured, without bias, by a ‘marker’ M in the calibration study. The measurement of M is considerably more expensive than that of Z and can be performed only in the smaller calibration study but not in the main study sample. M is related to X by the classical measurement error model:
M = X + u ………………………………….. (MI-5)
where u is a random error with zero expectation, independent of X, Z, and Y . One may assume that M is measured twice on each person in the calibration study and that the random errors u for the two measurements are independent, so that the variance of u can be estimated. One then considers the calibration study design in which W and two values of M and the disease variable Y are measured on each person. If Y is not measured in the calibration study, then the MR and MI methods are not directly available since they require estimates of moments of X conditional on Y . Indirect versions of MR and MI, based on the assumption of the non-differential measurement error, can be constructed in these circumstances, but such will not be pursued.
Details
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Regression Calibration.
The estimate, βX,RC is the standard RC estimate when the calibration study is external to the main study.
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Moment Reconstruction.
XMR(Z,Y) = E(X|Y) + G{Z −E(Z|Y)}
may be calculated as follows:
(a)
E(Z|Y) and var(Z|Y) are estimated from the main study.
(b)
E(X|Y) and var(X|Y) are estimated from the calibration study data, via the regression of M on Y using
E (X|Y) = E (M |Y)
and
var(X|Y) =_var(M|Y) −_var(u)/2,
where var(u) = var(M1 − M2) / 2.
G is then estimated by √ {var(X|Y) / var(Z|Y)}, and XMR is then calculated for each individual in the main study.
Finally, one estimates βX,MR as the coefficient of XMR in the regression of Y on XMR .
Stochastic Multiple Imputation.
The general approach is described in Appendix 2 of Little and Rubin (2002)[12]:
(1)
For each person in the main study sample who is not also in the calibration study, one imputes X using
XMI(Z,Y) = E(X|Z,Y) + e,
whereas for persons in the calibration study, one imputes using
XMI(Z,Y,M) = E(X|Z,Y,M) + e*.
In these formulas,
e is a random draw from the distribution of residuals in the regression of X on (Z,Y), and
e* is a random draw from the distribution of residuals in the regression of X on (Z,Y,M).
The procedure is repeated K times, creating a total of K imputed sets of covariates X (k)IM. For each k from 1 to K, one then regress Y on X (k)IM in the main study to obtain the estimate β (k)X,MI, and the naive model-based estimate var(β(k)X,MI) that ignores the fact that X was imputed on.
Finally, one estimates:
(i)
βX,MI = (1/K) ΣKk=1 β (k)X,MI
and
(ii)
var(βX,MI) = (1/K)ΣKk=1var(β(k)X,MI) + [(K + 1)/{K(K – 1)}]ΣKk=1 (β (k)X,MI – β X,MI)2
Simulation Results and Comparative Effectiveness of RC vs. MI

The foregoing procedure seemed to be ‘proper’ in the sense of Little and Rubin.[12] The method is expected to give unbiased estimates of the model parameters, and confidence intervals with coverage probabilities at the nominal level. Investigations, using K =10 and 40,[11,31] in the simulations resulted in parameter estimates which were essentially unbiased.
A Biostatistical Software for the Estimation: Zelig
In the CRAN collection of software in R, Zelig is a program that can estimate, and help interpret the results of, an enormous range of statistical models. It comes with infrastructure that facilitates the use of any existing method, such as by allowing multiply imputed data for any model. It takes the output of many existing statistical procedures and translates them into quantities of direct interest, and is suitable for analyzing the effects of systematic errors in the dependent variables of regression analyses.
In the following worked example, plot.ci, plots vertical confidence intervals of the dependent variables of a mass survey, using the analytical results of the function Zelig().
The plot.ci command generates vertical confidence intervals for linear or generalized linear univariate. For the plotting routine, the required usage formula is:
plot(x, CI = 95, qi = "ev", main = "", ylab = NULL, xlab = NULL,
       xlim = NULL, ylim = NULL, col = c("red", "blue"), ...)
for which the arguments are:
x
stored output from sim. The x$x and optional x$x1 values used to generate the sim output object must have more than one observation.

CI
the selected Confidence Interval. Defaults to 95 percent.

qi
the selected quantity of interest. Defaults to expected values.

Main
a title for the plot.

ylab
label for the y-axis.

Xlab
label for the x-axis.

xlim
limits on the x-axis.

ylim
limits on the y-axis.

col
a vector of at most two colors for plotting the expected value given by x and the alternative set of expected values given by x1 in sim. If the quantity of interest selected is not the expected value, or x1 = NULL, only the first color will be used.

...
Additional parameters passed to plot.
The output results are: for all univariate response models, plot.ci() returns vertical confidence intervals over a specified range of one explanatory variable.
The R code-segments listed below showed an application of the function plot.ci().
> install.packages("Zelig")

> library(Zelig)

Loading required package: MASS

Loading required package: boot

##
## Zelig (Version 3.5.5, built: 2010-01-20)
## Please refer to http://gking.harvard.edu/zelig for full documentation or 
## help.zelig() for help with commands and models supported by Zelig.
##
## Zelig project citations:

##    Kosuke Imai, Gary King, and Olivia Lau. (2009).

##    ``Zelig: Everyone's Statistical Software,''

##     http://gking.harvard.edu/zelig.

## and

##     Kosuke Imai, Gary King, and Olivia Lau. (2008).

##     ``Toward A Common Framework for Statistical Analysis and Development,''
##     Journal of Computational and Graphical Statistics, Vol. 17, No. 4 (December)
##     pp. 892-913.
##

## To cite individual Zelig models, please use the citation format printed with each 
## model run and in the documentation.
##

> require(Zelig)

> ls("package:Zelig")
[1]
"current.packages"
"dims"
"gsource"
[4]
"help.zelig"
"mi"
"model.end"
[7]
"model.frame.multiple"
"model.matrix.multiple"
"network"
[10]
"parse.formula"
"parse.par"
"plot.ci"
[13]
"plot.surv"
"plot.zelig"
"put.start"
[16]
"repl"
"rocplot"
"set.start"
[19]
"setx"
"sim"
"ternaryplot"
[22]
"ternarypoints"
"user.prompt"
"zelig"
[25]
"zeligDepStatus"
"zeligDepUpdate"
"zeligDescribeModelXML"
[28]
"zeligGetSpecial"
"zeligInstall"
"zeligListModels"
[31]
"zeligModelDependency"
> data(turnout)

> z.out <- zelig(vote ~ race + educate + age + I(age^2) +
+                                   income, model = "logit", data = turnout)
How to cite this model in Zelig: Kosuke Imai, Gary King, and Oliva Lau. 2008. "logit: Logistic Regression for Dichotomous Dependent Variables" in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software," http://gking.harvard.edu/zelig
> age.range <- 18:95

>

> x.low <- setx(z.out, educate = 12, age = age.range)

>

> x.high <- setx(z.out, educate = 16, age = age.range)

>

> s.out <- sim(z.out, x = x.low, x1 = x.high)

>
> plot.ci(s.out, xlab = "Age in Years",

+ ylab = "Predicted Probability of Voting",

+ main = "Effect of Education and Age on Voting Behavior")
Warning message:

In grep(tmp1, tmp) :

argument 'pattern' has length > 1 and only the first element will be used
> legend(45, 0.52, legend = c("College Education (16 years)",

+ "High School Education (12 years)"), col = c("blue","red"),

+ lty = c("solid"))

>

> legend(45, 0.52, legend = c("College Education (16 years)",

+ "High School Education (12 years)"), col = c("blue","red"),

+ lty = c("solid"))

>

> ## adding lines connecting point estimates

> lines(age.range, apply(s.out$qi$ev, 2, mean))

> lines(age.range, apply(s.out$qi$fd+s.out$qi$ev, 2, mean))
> # Outputting: Figure 52B.
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Figure 52B Use of the function plot.ci() from the CRAN package Zelig to plot the confidence intervals of the dependent variables in the regression analysis of large datasets commonly occurring in the Adventist Health Studies.
With respect to the above program in R, using the function plot.ci() in the CRAN package Zelig,

 (a)
 What are the functions of each line of R code-segment in the above sample R program?

(b)
Re-run the above code-segment in an R environment.

(c)
How does this approach reflect the systematic errors in the dependent variables of regression analyses?

Some final remarks on Biostatistics for Epidemiology and Public Health Using R
____________________________

The following aspects of using R are noted: * Integrity, compliance, accuracy, reliability, and on-line support issues in using R * Comparing R with SAS and SPSS * R programming and biostatistical software development
Integrity, compliance, accuracy, reliability, and on-line support issues for R
Integrity and Compliance of R
The integrity, reliability, and warranty of R as a programming and computational tool in biostatistics and epidemiology are being declared whenever a user selects and clicks on R, to open the R -window the following declaration is provided, for example:
R version 2.14.2 (2012-02-29)
Copyright (C) 2012 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

Platform: i386-pc-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.
Integrity, Accuracy, and Reliability of R
With respect to using R in publishing research work on epidemiology, a recent survey of the last 5 years’ American Journal of Epidemiology (AJE) shows that:
1.
The use of R in computations in Epidemiology research has been gaining wide acceptance and recognition. For example, in: Peng, R.D., Dominici, F., et al., (2005).- "Seasonal Analysis of Air Pollution and Mortality in 100 Cities", AJE; 161(6)585-594. It was declared that: (on Page 586).

All of the above models were ... implemented in the R statistical software package. ... and the code for fitting the models is available in the World Wide Web at http://www.ihapss.jhsph.edu/data/NMMAPS/R/ and in the ACKNOWLEDGMENTS paragraph (on Page 593), it was declared that: The research was supported by:
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Grant T32HL07024 from the National Heart, Lung, and Blood Institute
 SHAPE  \* MERGEFORMAT 



Grant R01ES012054 from the National Institute of Environmental Health Science (NIEHS)
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Grant P30ES03819 from the NIEHS Center for Urban Environmental Health
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Grant from the Health Effects Institute, Cambridge, Mass.
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Grant EPY 1261/02 from the Institute de Salud Carlos III, Spain
Thus, it appears that the AJE and the epidemiology community have accepted the efficacy of R as a research tool.
2.
The practice of Reproducible Epidemiologic Research (RER) proposed:
Owing to the time, expense, and opportunism of many current epidemiologic studies, it is often impossible to fully replicate their findings.  However, an attainable minimum standard is "reproducibility", which calls for datasets and software to be made available for verifying published findings and conducting alternative analysis. As the replication of important findings by multiple independent investigators is foundational to the advancement of scientific evidence, coupled with the status in the use of R in biostatistical computations, it is proposed that one should seek a standard for reproducibility and evaluate the reproducibility of current epidemiologic research. This issue, with particular relevance to the use of R, is outlined in the following paper:  "Reproducible Epidemiologic Research" (2006).- AJE; 163(9)783-789
3.
The Epidemiology and Biostatistics research community has also been active in addressing the same issue. The use of R is indeed acceptable, with appropriate cautionary measures in place
On-line Support for Using R
Much concomitant support facilities are available on-line. For example: available on-line help for R via the World Wide Web includes :
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Send R-help mailing list submissions to r-help@r-project.org
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To subscribe or unsubscribe via the www, visit https://stat.ethz.ch/mailman/listinfo/r-help or, via email, send a message with subject or body 'help' to r-help-request@r-project.org
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One can reach the person managing the list at r-help-owner@r-project.org
When replying, edit the Subject line so it is more specific than "Re: Contents of R-help digest...“
CRAN Mirrors

http://www.r-project.org/
The Comprehensive R Archive Network is available at over 70 URLs, in some 40 countries, One may choose a location close by.
Many of these sites can also be accessed using FTP. In addition, several StatLib mirrors around the world provide a complete CRAN mirror. If one want to host a new mirror at a specific institution, please have a look at the CRAN Mirror HOWTO.
To “submit” to CRAN, simply upload to ftp://cran.r-project.org/incoming and send email to mailto:cran@r-project.org.
Comparing R with SAS and SPSS
A worked examples (taken from the Statistics.com Internet Course on “Survival Analysis”, April 6–27, 2008) is being used to illustrate and assess the quality of R, in comparison with SAS and with SPSS. The example is being solved, consecutively, first using
(A)
R, then
(B)
SAS (Statistical Analysis Software), and finally
(C)
 SPSS (Statistical Package for the Social Sciences).
The computed results are compared to demonstrate the relative accuracy and reliability of using R.
The Worked Example
Provide the Kaplan–Meier (K–M) curves as part of the answer to the questions. Submit the codes. This assignment requires one to access the Anderson dataset from: http://www.sph.emory.edu/~dkleinb/surv2.htm
Q1:
Use the Anderson data to:
(a)
determine whether survival experience differs for:
(i)
males vs. females, and
(ii)
different categories of logWBC, White Blood Cells, (the variable "lwbc3" categorizes the variable into three groups).
(b)
Draw conclusions based on both graphical and statistical evidence.
Q2:
Using the Anderson data, create a new variable that dichotomizes logWBC at the median, then obtain the KM curves and a log rank test stratifying on this new variable. Provide the computer codes and outputs.
Q1 Solution Using R
> anderson = read.delim("L:\\My Documents\\Survival

+ Course\\Datasets\\anderson.txt")

# The Anderson dataset is stored in: http://www.sph.emory.edu/~dkleinb/surv2.htm
> install.packages(“survival”)

> library(survival)

> require(survival)

# Q1. Does survival experience differ by sex? by log wbc?
# R needs to know that survt is a Surv object:
> Y = Surv(anderson$SURVT, anderson$STATUS)

+ surv.sex = survfit(Y ~ SEX, anderson,
+ type="kaplanmeier")

# To see KM estimates at event times
> summary(surv.sex)

# To plot the KM curve

> plot(surv.sex)
>
# Use some plotting options to make it look better
> plot(surv.sex, main="Survival experience stratified by sex",

+ col=c("orange", "green4"), xlab="Survival time",
+ ylab="Survival distribution function",
+ sub="orange=female, green=male", lwd=2)

> # Outputting: Figure 53A.
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Figure 53A R plots of survival functions.
[image: image165.jpg]A comparison of the 3 Codes: R, SAS, SPSS

S sty Seidoper by Survival Functions

)
)

R SAS





Figure 53A
Figure 53B
Figure 53C
Kaplan–Meier curves for the Anderson dataset using R, SAS, and SPSS.
# The same computations for log WBC in three categories

> surv.lwbc = survfit(Y ~ LWBC3, anderson,
+ type="kaplan-meier")

> plot(surv.lwbc, main="Survival experience stratified by log
+ WBC", col=c("orange", "green4", "blue"),xlab="Survival time",
+ ylab="Survival distribution function", sub="orange=low,
+ green=medium, blue=high", lwd=2)
> # Outputting: Figure 54A
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Figure 54A R plots of survival functions by log WBC.
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Figure 54A
Figure 54B
Figure 54C
Plots of survival functions by log WBC for the Anderson dataset for Example 1 using R, SAS, and SPSS.
Q2 Solution
Create a new variable that dichotomizes logWBC at the median, and obtain KM curves and a log rank test stratifying on this new variable. One should look at both the graphs and the test statistics. There are many test statistics that have been developed to compare the equality of two or more Kaplan-Meier curves. One may make an a priori decision to use the log-rank test with a critical value of α = 0.05 for statistical significance.

One now needs to get log-rank test:
> statistics.survdiff(Y ~ SEX, anderson)

> survdiff(Y ~ LWBC3, anderson)
Note: The log-rank p-value for sex is p = 0.46, which is not significant. One would conclude that the survival experience of men is equivalent to the survival experience in women. The graphical evidence seems to support this conclusion, however one might be concerned that during the early part of follow-up men have relatively worse survival (compared to women), and that as follow-up progresses men tend to have relatively better survival. This should be kept in mind as one goes through the analysis. The log-rank p-value for lwbc3 is p = 0.0001, which is highly significant. Therefore, one would conclude that the survival experience for patients in the three different groups is very different.
The graphical evidence clearly supports this claim.
# Does survival experience differ by a dichotomized logwbc variable?
# First find the median:

> median(anderson$LOGWBC)

# Then make a new dichotomous variable: anderson
> $medlwbc = anderson$LOGWBC > 2.8

> surv.medlwbc = survfit(Y ~ medlwbc, anderson,
+                                         type="kaplan meier")
>
> plot(surv.medlwbc, main="Survival experience stratified by log
+                                               WBC about the median",
+        col = c("orange", "green4"),xlab="Survival time",

+        ylab= "Survival distribution function",
+        sub= "orange=below median, green=above medium",

+        lwd=2)

> # Outputting: Figure 55A
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Figure 55A R plots of survival functions by log WBC.
> survdiff(Y ~ medlwbc, anderson)
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Figure 55A
Figure 55B
Figure 55C
Plots of survival functions by log WBC for the Anderson dataset for Example 2 using R, SAS, and SPSS.
Conclusion: The log-rank p-value is p = 0.0001, which is highly significant. The graph shows that the two KM curves are very different. Hence, one may conclude that survival experience is not the same in the two strata.
(B) Solution Using SAS
libname l "L:\My Documents\Survival Course\Datasets";run;

Q1: Does survival experience differ by sex?

proc lifetest data=l.anderson method=km
plots=(s);

time survt*status(0);

strata sex;

title "Survival experience stratified by sex";

run;

# Outputting: Figure 56B
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Figure 56B SAS plots of survival functions.
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Figure 56A
Figure 56B
Figure 56C
*Does survival experience differ by logWBC in 3 categories?

proc lifetest data=l.anderson method=km
plots=(s);

time survt*status(0);

strata lwbc3;

title "Survival experience stratified by log WBC";

run;

# Outputting: Figure 57B
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Figure 57B SAS plots of survival functions.
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Figure 57A
Figure 57B
Figure 57C
Survival experience stratified by log WBC for the Anderson dataset using R, SAS, and SPSS.
Note: To answer the question Q1, consider both the test statistics and the graphs. Many test statistics are available for comparing the equality of two or more Kaplan-Meier curves. Here, the test statistic of choice is the log-rank test with a critical value of α = 0.05 for statistical significance. The log-rank p-value for sex is p = 0.46, which is not significant. One would conclude that the survival experience of men is equivalent to the survival experience in women.
The graphical evidence to appears support this conclusion. It might be possible that, during the early part of follow-up, men have relatively worse survival (compared to women) and that as follow-up progresses men tend to have relatively better survival.
The log-rank p-value for lwbc3 is p = 0.0001, which is highly significant. Hence, one would conclude that the survival experience for patients in the three different groups is very different.
The graphical evidence clearly supports this claim.
Q2
*Begin by dichotomizing the variable logwbc at the median
*To get the median one will use Proc Univariate;

proc univariate data=l.anderson;

var logwbc;

run;

*The median is 2.80. Create a new variable;

data anderson1;

set l.anderson;

if 0 <= logwbc <= 2.80 then wbcmed = 0;

else wbcmed = 1;

run;
*Now run Proc Lifetest;

proc lifetest data=anderson1 method=km plots=(s);
time survt*status(0);

strata wbcmed;

title "Survival experience stratified by log wbc at the
median";

run;

# Outputting: Figure 58B
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Figure 58B SAS Log–log plots of survival function.
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Figure 58-A
Figure 58-B
Figure 58-C
Survival experience stratified by log WBC at the median for the Anderson dataset using R, SAS, and SPSS.
Note: The log-rank p-value is p = 0.0001, which is highly significant. The graph shows that the two KM curves are very different. Hence, one may conclude that survival experience is not the same in the two strata.
(C) Solution Using SPSS
The SPSS code can be replicated by “point-and-click” approaches.

Q1: Does survival experience differ by sex?

KM

SURVT BY SEX /STATUS=STATUS(1)

/PRINT MEAN

/PLOT SURVIVAL

/TEST LOGRANK

/COMPARE OVERALL POOLED .

# Outputting: Figure 59C
[image: image176.jpg]cum survival

Survival Functions

SURVT

sex
I vcmsons
T v





Figure 59C SPSS plots of survival functions.
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Figure 59A
Figure 59B
Figure 59C
Survival experience for the Anderson dataset using R, SAS, and SPSS.
*Does survival experience differ by logWBC in 3 categories?

# Using SPSS
KM

SURVT BY LWBC3 /STATUS=STATUS(1)

/PRINT MEANnd

/PLOT SURVIVAL
/TEST LOGRANK
/COMPARE OVERALL POOLED
# Outputting: Figure 60C
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Figure 60C SPSS plots of survival functions.
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Figure 60A
Figure 60B
Figure 60C
Survival distribution functions for the Anderson dataset using R, SAS, and SPSS.
Note: To answer the question Q1, again one should look at both the graphs and the test statistics, as in the previous analysis using SAS. Similar conclusions are reached.
Again, the graphical evidence clearly supports such claim.
*Q2

*Begin by dichotomizing the variable logwbc at the median:

FREQUENCIES

VARIABLES=LOGWBC

/STATISTICS=MEDIAN

/ORDER= ANALYSIS .

*The median is 2.80. Create a new variable;

RECODE

LOGWBC

(0 thru 2.8=0) (2.8000001 thru Highest=1) INTO

wbcmed .

EXECUTE .
*Now run Kaplan-Meier curves:

KM

SURVT BY wbcmed /STATUS=STATUS(1)

/PRINT MEAN

/PLOT SURVIVAL

/TEST LOGRANK

/COMPARE OVERALL POOLED .

# Outputting: Figure 61C
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Figure 61-C SPSS plots of survival functions.
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Figure 61A
Figure 61B
Figure 61C
Survival distribution functions for the Anderson dataset: using R, SAS, and SPSS.
Note: Again, the log-rank p-value is p = 0.0001, which is highly significant. The graph shows that the two KM curves are very different. Hence, it is concluded that survival experience is not the same in the two strata.
A Summary of Computed Results:
	Parameters Selected
	Computed Results .

	
	R
	SAS
	SPSS

	log-rank p-value for sex (α = 0.05)
	0.46
	0.46
	0.46

	log-rank p-value for lwbc3 (α = 0.05)
	0.0001
	0.0001
	0.0001


Conclusion
From the foregoing comparative studies and other similar investigations,, it appears that the three biostatistical codes (R, SAS, SPSS) are comparable in terms of integrity, accuracy, and reliability.

However, R has the added advantage of being an open source code.

R programming and software development
____________________________

At this point R is demonstrably an excellent programming language for biostatistics and data management, widely used in epidemiology, public health, and preventive medicine research and investigations, in industry, business, government, etc. It is free, viz., an open source product. R is available for Windows, for the Macintosh, and for the Linux systems. It may be downloaded from the CRAN home page: http://cran.r-project.org/
A practically useful and concise manual[47] for learning R is: Venables, W. N., Smith, D. M., and the R Development Core Team. (2005). An introduction to R (Rev. ed.). Bristol, UK: Network Theory Limited.
R Programming Tools and Helps

1.
Some open source programming tools for R are: RStudio, StatET, JGR, Rcmdr, RKWard.
2.
There are a number of plug-ins for text editors such as Emacs, Vim, gedit, and the commercial program, by Revolution Analytics .

3.
There are various mailing lists (start with R-help) shown on the R home page.
4.
There are R user groups in cities around the world

5. An online place to ask questions is Stack Overflow.
6.
“The Art of R Programming” http://www.buecher.de/shop/handbuecher/the-art-of-r-programming/matloff-norman/products_products/detail/prod_id/33315334/
R is likely the world's most popular language for developing statistical software: 
The Art of R Programming provides a guided tour of software development with R. One’s programming skills may range from amateurish to professional, and along the way, one may learn about functional and object-oriented programming, mathematical simulations, and rearranging complex data into simpler and useful formats, including:
 SHAPE  \* MERGEFORMAT 



Create artful graphs to visualize data sets and functions
 SHAPE  \* MERGEFORMAT 



Write more efficient code using parallel R and vectorization
 SHAPE  \* MERGEFORMAT 



Interface R with C/C++, etc., for increased speed or functionality
 SHAPE  \* MERGEFORMAT 



Find new packages for text analysis, image manipulation, etc.

R has a number of virtues:
 SHAPE  \* MERGEFORMAT 



It is a public-domain implementation of the widely regarded S statistical language, and the R/S platform is a de facto standard among professional statisticians.
 SHAPE  \* MERGEFORMAT 



It is comparable, and often superior, in power to commercial products in most of the significant senses -- variety of operations available, programmability, graphics, and so on.
 SHAPE  \* MERGEFORMAT 



It is available for the Windows, Mac, and Linux operating systems.
 SHAPE  \* MERGEFORMAT 



In addition to providing statistical operations, R is a general-purpose programming language, so you can use it to automate analyses and create new functions that extend the existing language features.
 SHAPE  \* MERGEFORMAT 



R includes a library of several thousand user-contributed packages.
 SHAPE  \* MERGEFORMAT 



It incorporates features found in object-oriented and functional programming languages.
 SHAPE  \* MERGEFORMAT 



R is capable of producing beautiful graphics for your presentations, reports or articles.
 SHAPE  \* MERGEFORMAT 



The Journal of Statistical Software
This is a major journal (freely available over the Internet: http://www.jstatsoft.org/) established in 1996, publishes articles, book reviews, code snippets, and software reviews on the subject of statistical software and algorithms. For both articles and code-segments the source code is published along with the paper.

Biostatistical software is the link between biostatistical methods and their application in practice. This journal presents research that demonstrates the joint creation of computational and statistical methods and techniques.
Implementations can use other languages such as C, C++, S, FORTRAN, and environments such as R, S-PLUS, SAS, SPSS, STATA, MATLAB, Mathematica, etc.
This book ends with the following quotation from the author of the book “Why Use R for Your Statistical Work?” : as the Cantonese Chinese say:
”yau peng, yau leng”,
meaning:
“It is both inexpensive and attractive.
that is, “Why should one use anything else?”.
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