Practice-Based Clinical Inquiry in Nursing for DNP and PhD Research
Joan R. Bloch, PhD, CRNP, is associate professor of nursing, and has held secondary appointments as associate professor of Nutritional Science and Public Health at Drexel University. In her more than 30 years of experience as an educator, she has extensive experience in supervising master's- and doctoral-level students in the field of women's health. Since 1981, Dr. Bloch has been practicing as a women's health nurse practitioner and, most currently, practices in a public-funded prenatal clinic. After completing a National Institute of Nursing Research (NINR) postdoctoral research fellowship, Dr. Bloch has maintained an active program of perinatal health disparities research. She has served as a principal investigator on multiple funded and unfunded research projects. Dr. Bloch has authored many refereed/nonrefereed journal articles, book chapters, and refereed paper and poster presentations. She has served on multiple research-related committees at the university and in professional nursing and public health organizations. This includes the National Organization of Nurse Practitioner Faculties (NONPF), the Association of Women’s Health, Obstetric and Neonatal Nurses (AWHONN), and the Public Health Management Corporation (PHMC).

Maureen R. Courtney, PhD, APRN, FNP-BC, is associate professor, University of Texas at Arlington College of Nursing and Health Innovation, where she teaches clinical research to doctoral students and supervises Doctor of Nursing Practice (DNP) projects and PhD dissertations, as well as advanced role and clinical courses in the family nurse practitioner (FNP) curriculum. Dr. Courtney has served as a principal investigator for numerous nationally funded community-based primary care projects. Since 1983, Dr. Courtney has been practicing as an FNP, and most currently, practices in a family practice clinic. The most notable of the many awards she has received are as follows: Outstanding NP in the State of Texas (American Academy of Nurse Practitioners), Primary Care Policy Fellowship (U.S. Department of Health and Human Services), and Distinguished Practitioner, National Academy of Nursing, in addition to research awards. Dr. Courtney is an active researcher, having served as the PI on multiple funded and unfunded research projects, and has published many papers and technical research reports. She has made more than 100 national presentations and published several abstracts/proceedings. She is certified by the International Joanna Briggs Institute in the following three areas: conducting quantitative systematic reviews, qualitative systematic reviews, and cost-effectiveness systematic reviews. Dr. Courtney is active in many professional organizations and has served on the Research Advisory Committee to the American Association of Nurse Practitioners, and co-chair of the Research Special Interest Group at NONPF.

Myra L. Clark, PhD, RN, FNP-C, is associate professor, the FNP program, The University of North Georgia, to which she has returned after teaching at the University of Virginia (UVA) School of Nursing for the past 5 years. She is the director of research for the College of Health Sciences and Professions at The University of North Georgia. Prior to returning to The University of North Georgia, she practiced as an FNP at the Charlottesville Free Clinic. Dr. Clark is the recipient of several professional awards, including being inducted as a distinguished educator into the Hall of Honor, Mercer University School of Nursing, the Verhonick Dissertation Award, and the Outstanding Graduate Student Award. She has published multiple peer-reviewed articles. Dr. Clark's funded research (National Institutes of Health and UVA) focuses primarily on diabetes. She has presented both nationally and internationally on various aspects of diabetes and diabetes self-care. She is professionally active in many nursing organizations, including the American Nurses Association, Southern Nursing Research Society, American Association of Nurse Practitioners, the National Organization of Nurse Practitioner Faculty, the Virginia Diabetes Council, and the National Rural Health Association, among others, and is co-chair of the NONPF Research Special Interest Group.
Practice-Based Clinical Inquiry in Nursing for DNP and PhD Research

LOOKING BEYOND TRADITIONAL METHODS

Joan R. Bloch, PhD, CRNP
Maureen R. Courtney, PhD, APRN, FNP-BC
Myra L. Clark, PhD, RN, FNP-C

Editors
CONTENTS

Contributors ix
Preface xi
Acknowledgments xv

PART I: EXISTING PRACTICE-BASED METHODS FOR CLINICAL INQUIRY

1. Health Program Planning and Evaluation: What Nurse Scholars Need to Know 3
 L. Michele Issel
 Objectives 3
 The Public Health Pyramid and Health Programs 4
 Rationale for Utilizing Program Planning and Evaluation Approaches 5
 Methods for Program Planning and Evaluation 7
 Interpretation and Presentation of Scholarship Pertaining to Program Planning and Evaluation 16

2. Patient-Engaged and Community-Based Participatory Research 21
 Bonnie Jerome-D’Emilia and Kathleen J. Jackson
 Objectives 21
 Purpose of PAR 22
 Description of PAR 23
 Importance of PEPR and CBPR 27
 Methods of Creating PEPR and CBPR 31
 The Interpretation and Presentation of PEPR and CBPR 34
 Considerations: Challenges and Ethical Issues in PEPR and CBPR 36
 Examples of Published PEPR and CBPR 38
3. Systematic Reviews 45
Susan Weber Buchholz, Denise M. Linton, Maureen R. Courtney, and Michael E. Schoeny
Objectives 45
The Importance of Systematic Reviews 45
Three Important Reasons for Systematic Reviews 48
Conducting a Systematic Review 49
Interpretation and Presentation of Systematic Reviews 54
Appraisal of Systematic Reviews 60
Appendix 3.1 Systematic Review Resources 65
Appendix 3.2 Examples of Systematic Review Abstracts From the Published Literature 66

4. Quality Improvement Research 69
Catherine Johnson, Mary Ellen Smith Glasgow, and Mary Elizabeth “Betsy” Guimond
Objectives 69
The Importance of Quality Improvement 69
Reasons Why Nurse Scholars Should Use Quality Improvement Research Approaches 72
Methods for Quality Improvement Research 74
Models for Quality Improvement Developed in Health Care 78
PhD/DNP Model of Collaboration for Quality Improvement in Health Care 84

PART II: EVOLVING PRACTICE-BASED RESEARCH METHODS

5. Big Data in Nursing Research 93
Patricia Abbott and Boqin Xie
Objectives 93
Defining Big Data and Analytics 94
Big Data in Nursing Inquiry 99
Methods, Tools, and Processes Used With Big Data With Relevance to Nursing 103
Examples From the Published Literature 110

6. Comparative Effectiveness Research 117
Georgia L. Narsavage
Objectives 117
Description of CER 118
Reasons for Using CER 121
Methods of Creating CER 122
Interpretation of CER 130
The Presentation of CER 132
Appendix 6.1 Comparative Effectiveness Resources 138
Appendix 6.2 Examples of CER Abstracts From the Published Literature 139
Contents

7. Dissemination Research 145
Jane T. Garvin, Amber B. McCall, and Devita T. Stallings
- Objectives 145
- Defining Dissemination Research 145
- Importance of Dissemination Research 147
- Methods of Creating Dissemination Research 148
- Analysis of Data Related to Dissemination Research 151
- Interpretation and Presentation of Dissemination Research 152
- Examples of Published Dissemination Research 154

8. Implementation Research 157
Joan R. Bloch, Myra L. Clark, and Judy Faust
- Objectives 157
- Why Nurse Scholars Should Use Implementation Science in Research and Practice 161
- How to Use Implementation Science 163
- The Interpretation and Presentation of Implementation Research 177

PART III: A TOOLBOX FOR GREATER IMPACT AND SUCCESS

Joan R. Bloch and Sarah Cordivano
- Objectives 189
- Geographic Information Systems 190
- Reasons Why GIS Is Important for Practice-Based Clinical Inquiry 194
- How to Use GIS in Nursing Clinical Inquiry Research 199
- Examples of Published Literature 205

10. A Statistical Toolbox: Tips for Engaging in Clinical Inquiry to Improve Health and Health Care 213
Louis Fogg, Beth A. Staffileno, and Marcia Murphy
- Objectives 213
- The Statistical Toolbox 214
- Working With Statisticians: What Nurse Scholars Need to Know 225
- Conclusion With Words of Wisdom From the Statistician Himself 231

11. Logic Models 235
Shirlee M. Drayton-Brooks, Paula Gray, and Maria Elayne DeSimone
- Objectives 235
- Logic Model Defined 235
- The Importance of Logic Models 237
- Reasons for Using Logic Models 238
- Methods of Creating Logic Models 238
- Presentation of Theory-Driven Logic Models 240

Index 257
CONTRIBUTORS

Patricia Abbott, PhD, RN, FAAN, FACMI Associate Professor, Director of the Hillman Scholars, School of Nursing, University of Michigan, Ann Arbor, Michigan

Joan R. Bloch, PhD, CRNP Associate Professor, College of Nursing and School of Public Health, Drexel University, Philadelphia, Pennsylvania

Susan Weber Buchholz, PhD, ANP-BC, FAANP Professor, College of Nursing, Rush University, Chicago, Illinois

Myra L. Clark, PhD, RN, FNP-C Associate Professor, Family Nurse Practitioner Program, The University of North Georgia, Dahlonega, Georgia

Sarah Cordivano, MUSA Spatial Data Analyst, Project Manager, Data Analytics, Azavea, Philadelphia, Pennsylvania

Maureen R. Courtney, PhD, APRN, FNP-BC Associate Professor, College of Nursing and Health Innovation, University of Texas, Arlington, Texas

Maria Elayne DeSimone, PhD, NP-C, FAANP Clinical Professor, School of Nursing, Widener University, Chester, Pennsylvania

Shirlee M. Drayton-Brooks, PhD, FNP-BC, FAANP Professor, Director, Doctor of Nursing Practice Program, School of Nursing, Widener University, Chester, Pennsylvania

Judy Faust, RN, MBA Administrator/Clinical Director Women and Children, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania

Louis Fogg, PhD Associate Professor, College of Nursing, Rush University, Chicago, Illinois

Jane T. Garvin, PhD, APRN, FNP-BC Assistant Professor, College of Nursing, Augusta University, Augusta, Georgia
Contributors

Mary Ellen Smith Glasgow, PhD, RN, ACNS-BC, FAAN Dean and Professor, School of Nursing, Duquesne University, Pittsburgh, Pennsylvania

Paula Gray, DNP, FNP-C Clinical Assistant Professor, Director Family Nurse Practitioner Programs, School of Nursing, Widener University, Chester, Pennsylvania

Mary Elizabeth “Betsy” Guimond, PhD, RN, WHNP-BC Assistant Professor, Coordinator, Doctor of Nursing Practice, School of Nursing, Duquesne University, Pittsburgh, Pennsylvania

L. Michele Issel, PhD, RN Professor, Director, Public Health Sciences, College of Health and Human Services, University of North Carolina at Charlotte, Charlotte, North Carolina

Kathleen J. Jackson, DNP, MA, APRN Assistant Professor, School of Nursing, Rutgers University, Camden, New Jersey

Bonnie Jerome-D’Emilia, PhD, MPH, RN Associate Professor, School of Nursing, Rutgers University, Camden, New Jersey

Catherine Johnson, PhD, FNP, PNP Chair, Advanced Practice; Executive Director of Community-Based Health and Wellness Centers, School of Nursing, Duquesne University, Pittsburgh, Pennsylvania

Denise M. Linton, DNS, FNP-BC Associate Professor, College of Nursing and Allied Health Professions, University of Louisiana at Lafayette, Lafayette, Louisiana

Amber B. McCall, PhD, APRN, FNP-BC Assistant Professor, College of Nursing, Augusta University, Augusta, Georgia

Marcia Murphy, DNP, ANP, FAHA Associate Professor, College of Nursing, Rush University, Chicago, Illinois

Georgia L. Narsavage, PhD, RN, APRN, FAAN, FNAP Professor, School of Nursing, West Virginia University; Director, Interprofessional Education, West Virginia University Health Sciences Center, Morgantown, West Virginia

Michael E. Schoeny, PhD Assistant Professor, Rush University, College of Nursing, Chicago, Illinois

Beth A. Staffileno, PhD, FAHA Associate Professor, College of Nursing, Rush University, Chicago, Illinois

Devita T. Stallings, PhD, RN Assistant Professor, School of Nursing, Saint Louis University; St. Louis, Missouri

Boqin Xie, PhD, RN Postdoctoral Research Fellow, School of Nursing, University of Michigan, Ann Arbor, Michigan
In this book we build strategically upon traditional nursing research methods textbooks to create a critically needed textbook for PhD and Doctor of Nursing Practice (DNP) nursing students. This book serves those who wish to bring practice-based clinical inquiry into their doctoral studies by building upon the readers’ existing knowledge of the research process, methods of scientific inquiry, and analytic techniques. This advanced-methods textbook pulls from an array of frequently used interdisciplinary translational research approaches that have gained popularity over the past decade.

Practice-based research approaches provide the nursing profession with unprecedented opportunities for collaboration among nurses in academe and practice. The exponential growth of DNP programs provides great promise to rapidly accelerate the advancement of nursing science and nursing practice through productive PhD–DNP collaborations. As a result, nurses are now poised to lead the scholarly approaches to generate, advance, and disseminate knowledge that is essential to improve patient well-being and outcomes. It is noteworthy that the same Institute of Medicine (IOM) report that gave rise to the DNP degree, *Crossing the Quality Chasm: A New Health Care System for the 21st Century* (2001), also brought greater respect and support for practice-based research approaches. Additionally, newer practice-based research approaches were brought about in ways that allow the incorporation of technology and knowledge from numerous other disciplines.

Although this is a truly exciting time for nurse scholars, with opportunities for intradisciplinary and interdisciplinary research collaborations, the realities of continued significant disease burden in the presence of an excess of research evidence that could guide evidence-based solutions tempers our overall enthusiasm. As scholars, we must join with our colleagues to foster the science of translating evidence to practice where it will stick. Moreover, we need to apply our nursing science to advance practice-based evidence.

Nurse scholars must participate in robust research teams that aim at improving the overall health of the population. The complexity of health care systems and technology gives rise to both new challenges and new opportunities for clinical inquiry. Will our colleagues in public health, behavioral economics, or computer and information science, for example, think of including nurses in their research team to develop, implement, and evaluate innovation at the bedside and in the community?
Do nurse scholars understand the value of interdisciplinary teams? Do they know how to reach out to other disciplines to create interdisciplinary teams? These collaborations can be enhanced by incorporating the evolving compendium of evidence-based and practice-based methods presented in this textbook into doctoral nursing education.

In this spirit, as faculty teaching in both PhD and DNP programs, we have looked for a textbook that would acquaint our doctoral students with an array of practice-based approaches for clinical inquiry that typically have not yet been integrated into doctoral programs. As each of us is a member of interdisciplinary research teams and a practicing clinician, we recognized that these practice-based approaches—some already well known and practiced in other disciplines—were not yet commonly presented in our doctoral curricula. For this reason, we have developed this textbook.

KEY FEATURES OF THIS BOOK

- Concise resources for research methodologies that are useful in evidence-based and practice-based clinical scholarship and research
- Description of practice-based interdisciplinary health care methodologies needed for evidence-based improvement in health and health care systems
- Source book for determining practice-based research approaches for DNP and PhD nurse scholars
- Chapters written by experienced academic and practice scholars, who have expertise in their topics, from across geographic areas and institutions in the United States

HOW TO USE THIS BOOK

Each chapter is organized strategically to provide a guide on why and how to use the particular scholarly approach. With a consistent organization for each chapter, the reader can toggle back and forth throughout the book to compare and contrast the approaches, enabling deeper and better understanding of scholarly approaches that best meet his or her clinical inquiry needs. Each chapter begins by highlighting the importance of the method and its description. Reasons for using that particular method for doctoral nursing work are identified, followed by practical information about how to use the method. Then, ways to use the method are described, along with examples of the particular method from the published literature.

The chapters in this book are organized into three parts:

- Existing Practice-Based Methods for Clinical Inquiry
- Evolving Practice-Based Research Methods
- A Toolbox for Greater Impact and Success

In Part I, each chapter describes an existing method used extensively among interdisciplinary health scholars to improve clinical and population health. These chapters provide practical information about (a) program planning and evaluation;
(b) patient-engaged and community-based participatory research (CBPR); (c) systematic reviews; and (d) quality improvement.

In Part II, the chapters include innovative emerging science and methods that have evolved in response to the global need to translate science to practice and practice to science more effectively. The chapters cover emerging science and research in regard to (a) big data, (b) dissemination, (c) implementation, and (d) comparative effectiveness research.

Part III concludes the book by providing a toolbox of practical tips for doctorally prepared nurses to consider for impact and success in research and program proposals. The chapters cover (a) a statistical toolkit; (b) the use of geographical information systems (GIS) in health research; and (c) the design of logic models.

It is our hope that this book will enhance practice-based clinical inquiry for practice and research scholars to advance nursing science and achieve desired patient and population health outcomes. Working collaboratively within nursing and with other disciplines can help in improving the quality and effectiveness of health care for all.

Joan R. Bloch
Maureen R. Courtney
Myra L. Clark
ACKNOWLEDGMENTS

We express our profound gratitude to all authors for their expert contributions to this textbook. We believe this unique textbook will educate DNPs and PhDs to be more effective scholars in their respective areas, and that, ultimately, the patients we all serve will benefit.

We are also grateful to our many colleagues and students who have enriched our research knowledge and endeavors along the way. Lastly, this book would have never been possible if it was not for the immediate interest, encouragement, and support from Margaret Zucarini of Springer Publishing Company—so, thank you!
PART I

EXISTING PRACTICE-BASED METHODS FOR CLINICAL INQUIRY
CHAPTER ONE

HEALTH PROGRAM PLANNING AND EVALUATION: WHAT NURSE SCHOLARS NEED TO KNOW

L. MICHELE ISSEL

OBJECTIVES

After reading this chapter, readers will be able to:

1. Outline the basic steps involved in program planning and evaluation of the program
2. Describe different types of needs and their relevance to planning a programmatic intervention
3. Explain the implications of distinguishing between a program and an intervention
4. Identify appropriate methodologies for each level of program effect evaluation
5. Advocate for nurse scholars as key members of a health program planning or evaluation team

Current trends in health care emphasize population health, health promotion, quality of care improvement, and performance standards. These trends reflect a focus not on the provision of direct, clinical services per se but rather on the health care delivery system. Typically, each of these trends is addressed separately, which need not be the case. Nurses, particularly those with advanced graduate education, will be involved in or managing activities related to each of these trends. To be savvy and make valued contributions to those activities, nurse scholars can bring a unique set of skills to the table, one of which is health program planning and evaluation.

In this chapter, health program planning centers on interventions. An intervention is something done intentionally to have a beneficial effect on the recipient (Issel, 2014). This broad definition of an intervention encompasses a continuum of actions, ranging from individually focused actions, such as clinical medical treatments, to population-focused ones, such as a mass media health awareness campaign. A program then can be understood as the mechanism and structure used to deliver an intervention or a set of synergistically related interventions. A program can exist as a funded entity; however, it is the actions of a health professional who delivers the actual intervention that makes the program effective. For example, Women, Infants, and Children (WIC) exists as a major federally funded program to improve nutrition for pregnant and lactating women. But the nutritional counseling done by
the WIC staff and the provision of nutritional supplements constitute the interventions that make WIC a success, meaning an effective program. Program planning includes the actions that determine and develop the mechanism for delivery of the intervention as well as the specification of the intervention. Those actions occur after assessing the needs of the target audience and include (a) selecting interventions that have the highest likelihood of addressing the identified and prioritized health problems or needs and (b) developing the organizational structure and mechanisms by which the intervention will be delivered or provided. Program evaluation is the application of scientific methods to determine the extent to which the program was implemented as planned and the extent to which the planned effect was achieved. As implied by the definitions of program planning and evaluation, program planning and evaluation constitute a cycle (Figure 1.1) in which the evaluation findings are subsequently used for continued assessment and refinement of the program and its interventions.

THE PUBLIC HEALTH PYRAMID AND HEALTH PROGRAMS

The perspective taken in this chapter is that program planning and evaluation occur at each level of the public health pyramid (Frieden, 2010; Issel, 2014). The public health pyramid (Figure 1.2) represents the inverse relationship between the effort and resources needed to make a change and the size of the group reached with the intervention. Starting at the pyramid base, the health care system and community socio-economic structure form the base with laws, health care workforce, regulations, quality assurance programs, and technological resources that support the delivery of all health care services and programs. Investments in the pyramid base can yield high returns in quality and effective delivery of health care services and programs. Moving
up the pyramid, the next level represents a true population that receives interventions designed for populations, with those interventions being the most cost effective; that is, a relatively low cost per each of those persons reached by the program.

Fluoridation of water is a good example of a low cost that reaches entire populations. The middle of the pyramid represents aggregates that are groups with at least one common characteristic. The delivery of interventions to groups and aggregates often entails enabling services, such as transportation services, day care centers, and financial assistance programs. At the apex of the pyramid are individuals and clinical care. Clinical care has the smallest reach and is the costliest. Although clinical care has many benefits to individuals, the limited reach and cost make it less preferable for prevention and health promotion. The current trend of population focus and health promotion puts increasing emphasis on programs that are a broader level in the public health pyramid.

This chapter provides an introductory overview of program planning and evaluation as scholarly activities for doctoral-prepared nurses, and it provides resources for gaining depth of knowledge and skill. This chapter is organized into three main sections. The rationale section outlines the value of program planning and evaluation to nursing scholars. In the methods section, basic content covers types of assessments, implementation considerations, and key evaluation approaches. In the last section, ethical responsibilities and dissemination are reviewed.

RATIONALE FOR UTILIZING PROGRAM PLANNING AND EVALUATION APPROACHES

Nurse scholars need to know about and be able to utilize a program planning and evaluation approach for at least three reasons. Ultimately, each reason relates to advancing nursing knowledge and practice.

Reason 1: Evaluation Research Advances Nursing Research

Evaluation research is the systematic, scholarly application of research methods to assess the extent to which a program was implemented and the magnitude of the

![Figure 1.2 The public health pyramid.](image-url)
Existing Practice-Based Methods for Clinical Inquiry

Reason 2: Evaluation Research Contributes to Translational and Implementation Sciences

Systematic implementation of the scientific evidence for a program is consistent with advanced nursing practice. Translational science is a field of study focused on understanding how to apply knowledge from basic, laboratory research to the creation of interventions provided to both individual patients and populations. As nurse scholars generate new treatments in nursing laboratories, those interventions need to be translated into nursing care as interventions. Evaluation is one approach to assessing that the translation has occurred. Implementation science, sometimes considered an element of translational science, is the systematic study of the factors that influence the extent to which an evidence-based intervention can be put into routine practice. The success of an evidence-based intervention can vary depending upon a wide variety of conditions under which the intervention is provided. Through the process of evaluation and dissemination of the evaluation findings regarding barriers and facilitators to implementation, nursing scholars contribute to advancing translational and implementation science.

Reason 3: Evaluation Research Advances Administration Science

Smart management of the nursing and health care system includes efficient and effective use of resources. Program planning and evaluation can be useful tools for making managerial and administrative decisions about what to support, fund, or endorse. The evaluation, particularly of the implementation of the program, can yield relevant insights to managing health professionals, interdisciplinary teams, and other health systems resources. Such insights contribute to administration science, the field of knowledge about creating and managing organizational structures. Nursing scholars who engage in evaluation research and disseminate that known information are essentially advancing administration science.
METHODS FOR PROGRAM PLANNING AND EVALUATION

The methods for program planning and evaluation are presented as three main phases in the planning and evaluation cycle: assessment and planning, program implementation, and effect evaluation. The key concepts and processes involved in each phase are briefly described, with summaries of what the processes are, when the processes of that phase are done, who typically does those processes, how the processes are done, what time and costs are involved, and, lastly, the caveats for nurse scholars to consider.

Assessment and Planning Phase

Needs Assessment

As with the nursing process, program planning begins with assessment of need, characteristics of the health problem, and quantification of the magnitude and seriousness of the problems identified. Unlike assessment of an individual patient, programs often are intended for aggregates, populations, or communities. Thus, the assessment focuses on understanding the needs of individuals, aggregates, populations, or communities. The process begins with defining need. Bradshaw (1972) identified four types of needs, which are particularly relevant for thinking across the public health pyramid. Each ought to be assessed and considered during the program planning stage.

Relative needs are essentially the identification of disparities through comparison of groups. Most of the health disparities literature highlights the relative need of disadvantaged groups. Needs also can be identified as perceived by a group. For example, preadolescent boys may perceive a need for a skateboard park, whereas members of the African American community might perceive a need for affordable diabetes supplies. The needs as perceived by various groups may or may not correspond to the normative needs, which are needs from the perspective of a health professional. So, the pediatric nurse practitioner might say that the preadolescent boys need to be up to date on vaccinations, and the nurse diabetes counselor might say that preadolescent boys need to access fresh fruits and vegetables. The expressed needs are identified through health care seeking and purchasing behavior, and they reveal a different aspect of needs. The expressed needs of the preadolescent boys might be seen in the rate of seeking care at urgent care centers for injuries related to bicycle accidents. The expressed needs of the African American community could be understood through the low rates of mammography screening for women.

Needs assessment is typically done early in the program planning cycle for new programs. Assessing each type of need may reveal the degree of consistency in the pattern of needs. For example, Frank, Kershaw, Chapman, Campbell, and Swinkels (2015) found that residents of two large cities voiced preference for living in walkable settings (perceived need) and those who lived in more walkable neighborhoods walked more (expressed need). In this example, the consistent pattern of both perceived and expressed needs would strengthen the case for a population-level intervention, such as a policy regarding walkable neighborhoods. For ongoing programs, updated needs assessment might occur as a routine activity or as part of a grant renewal process. The techniques and primary focus of needs assessments
Existing Practice-Based Methods for Clinical Inquiry

will vary depending upon the approach taken. Issel (2014) presents four different approaches: an epidemiological approach, a public health approach, a social approach, and an asset approach. Each asks different questions and has a different emphasis. No single approach is inherently better than another. What makes a needs assessment “good” is that it provides insights into the root causes of the health problems, and those insights can form the basis for designing interventions to address those problems.

Needs assessments can be done by nurse scholars by applying diverse methods, such as survey methodology or community focus groups, or analyzing epidemiological data. Ideally, needs assessments involve both individuals who might receive the program and interdisciplinary health and human services professionals. Depending on the approach, needs assessments can be done rapidly, as would be done after a disaster, or over several months, as would be done in a location for the first time and for developing a more complex community health promotion program.

Caveats for nurse scholars are relatively few at this stage in the program planning and evaluation cycle. However, one key caveat is being flexible in the methods used to assess needs while simultaneously guiding stakeholders toward the most scientifically rigorous method. Nurse scholars have a history of involvement in assessing population needs. Table 1.1 summarizes a few examples of the relationship between nursing and needs assessment across the public health pyramid.

Prioritization

Prioritization is the overall process of choosing which need to address. Prioritizing the needs uses the needs assessment data to determine the severity and prevalence of problems as the basis for selecting which need to address. Information about possible effective interventions and preferences of the target audience are taken into consideration. Stakeholders will have different views on which needs are the most important and deserving of attention, which data are the most relevant, and which criteria are to be used for prioritization. These different views can lead to potential conflicts. Thus, part of the prioritizing process involves agreeing upon a philosophical and ethical framework to guide the prioritization. The agreed-upon framework then guides a systematic, quantitative approach to prioritizing needs and selecting the need that will be addressed through a health program.

Prioritization can be done by the group charged with addressing the problem. Ideally, stakeholders for whom the needs are salient are included, whether these are the grant proposal writers or the clinical quality improvement team. Several different systematic, rational approaches exist to arrive at a prioritized list of needs (Issel, 2014). The choice of the prioritization approach depends on the urgency to make a decision, the expertise among the decision makers, and the need for transparency in the process. Generally, the costliest and most time-consuming aspect of prioritization is the effort to gain consensus across the stakeholders.

Caveats for nurse scholars relate mostly to balancing professional biases with the data and the preferences of stakeholders. As health professionals, nurse scholars may prioritize needs differently from other health professionals involved in the planning process, perhaps aligning more closely with objective normative and relative needs. Being politically savvy and culturally sensitive may require patience in helping stakeholders balance perceived needs with relative and expressed needs.
Program Objectives

Having decided upon the need to be addressed, the next step is to establish what will be accomplished by a health program. Although the terms *goals* and *objects* are used inconsistently, *goals* are best thought of as the overarching statement about what will be achieved in the long term. *Objectives*, in contrast, specifically state the short-term achievements in measurable terms, and they thus provide more guidance for what will be measured. Both goals and objectives guide the development of the intervention and the subsequent program monitoring and evaluation. *Process objectives* focus on what will be done, whereas *outcome*, or *effect, objectives* focus on the benefits that program participants will achieve. Issel (2014) suggests writing process objectives using the TAAPS format: Time frame, Amount of what Activities done by which Program Staff/Participants. Using a parallel format, when writing effect objectives, use the TREW format: In what Time frame, what portion of Recipients experience what Extent of Which type of change (Table 1.2). Both the TAAPS and

<table>
<thead>
<tr>
<th>Example</th>
<th>Pyramid Level</th>
<th>Purpose</th>
<th>Data Collection</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filbert, Chesser, Hawley, and St. Romain (2011)</td>
<td>Individual</td>
<td>Determine extent of obesity in a county</td>
<td>Height and weight measurements</td>
<td>Percentage of boys and girls with BMI higher than 85th percentile</td>
</tr>
<tr>
<td>Hayff and Secor-Turner (2014)</td>
<td>Individual</td>
<td>Staff perceptions of health care needs of homeless</td>
<td>Interviews</td>
<td>List of needs and barriers to care</td>
</tr>
<tr>
<td>Buran, Sawai, Grayson, and Criss (2009)</td>
<td>Family, aggregate</td>
<td>Understand needs of parents of child with cerebral palsy</td>
<td>Questionnaire used in survey</td>
<td>List of parents’ service needs, information needs, and obstacles to treatment</td>
</tr>
<tr>
<td>McDermott-Levy and Weatherbie (2012)</td>
<td>Population</td>
<td>Understand the health needs as perceived by members of a Nicaraguan community and resource needs of the promotores</td>
<td>Interviews of promotores and qualitative analyses</td>
<td>List of common health problems; supplies needed by the promotores</td>
</tr>
<tr>
<td>Aronson, Wallis, O’Campo, and Schafer (2007)</td>
<td>Population</td>
<td>Examine local context of community health program and describe features that affect the target population and health outcomes</td>
<td>Geocoding of physical features in census tracts</td>
<td>Identify high-risk geographical areas and create composite risk scale</td>
</tr>
</tbody>
</table>

TABLE 1.1 Examples in the Published Literature of Needs Assessments Related to Nursing

<table>
<thead>
<tr>
<th>Example</th>
<th>Pyramid Level</th>
<th>Purpose</th>
<th>Data Collection</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filbert, Chesser, Hawley, and St. Romain (2011)</td>
<td>Individual</td>
<td>Determine extent of obesity in a county</td>
<td>Height and weight measurements</td>
<td>Percentage of boys and girls with BMI higher than 85th percentile</td>
</tr>
<tr>
<td>Hayff and Secor-Turner (2014)</td>
<td>Individual</td>
<td>Staff perceptions of health care needs of homeless</td>
<td>Interviews</td>
<td>List of needs and barriers to care</td>
</tr>
<tr>
<td>Buran, Sawai, Grayson, and Criss (2009)</td>
<td>Family, aggregate</td>
<td>Understand needs of parents of child with cerebral palsy</td>
<td>Questionnaire used in survey</td>
<td>List of parents’ service needs, information needs, and obstacles to treatment</td>
</tr>
<tr>
<td>McDermott-Levy and Weatherbie (2012)</td>
<td>Population</td>
<td>Understand the health needs as perceived by members of a Nicaraguan community and resource needs of the promotores</td>
<td>Interviews of promotores and qualitative analyses</td>
<td>List of common health problems; supplies needed by the promotores</td>
</tr>
<tr>
<td>Aronson, Wallis, O’Campo, and Schafer (2007)</td>
<td>Population</td>
<td>Examine local context of community health program and describe features that affect the target population and health outcomes</td>
<td>Geocoding of physical features in census tracts</td>
<td>Identify high-risk geographical areas and create composite risk scale</td>
</tr>
</tbody>
</table>

BMI, body mass index.
the TREW objectives follow the generic format “by when, who will do what to what extent,” although the TAAPS and TREW both provide greater specificity and measurement parameters. In particular, the effect objective ought to indicate the degree or amount of beneficial change, given a specific intervention dosage. The measurement indicator then naturally flows from the extent and type of activity or benefit. The final achievement level ought to be stated as a specific value, rather than stated as “improve” or “reduce,” which is less precise.

Development of both process and effect objectives occurs during the planning stage and can be done with the input of future program staff, potential participants, and organizational stakeholders. Objective measures can be used as points of reference for keeping programs aligned with the original intent and for determining the need for program improvements. The approach to measuring objectives is actually stated within the objectives, as the AA in the TAAPS objectives and as the EW in the TREW objectives. The number of both process and effect objectives ought to reflect the complexity of the program, the length of its planned implementation, and the logistic and cost realities of collecting the data specified in the objective measures. The inclination to write many objectives needs to be balanced against those realities.

Caveats for nurse scholars with regard to developing objectives fall into two categories: sufficiency and specificity. Sufficiency encompasses having enough objectives to inform the implementation and evaluation of the program, without becoming burdensome in number. This leads to specificity as a means to determine sufficiency.
The greater the specificity of the objectives, the greater the likelihood that they will be informative once measured. Specificity includes having realistic, data-informed target numbers for the extent of change, the amount of effort required, and the time frame for changes to occur.

Intervention Considerations

In the context of health programs, the choice of interventions needs to consider the strength of the evidence that the actions will have the desired effect. In addition to choosing evidence-based interventions, program planners ought to consider the extent to which the intervention can be done with fidelity to the empirically supported action. Ideally, the intervention shown to be effective in research ought to be replicable by the program staff. Variations from the empirically tested intervention can diminish the potential effect of the intervention as implemented. Also, the dosage of the intervention needs to be specified, again replicating the dosage shown by research to be effective. For example, to address physical activity among the elderly, the physical activity class (as the intervention) ought to match the dosage used in the research, which would include the number of weeks of sessions, number of minutes per session, the type of movements in each session, and the extent of instruction and explanation. Both intervention dosage and fidelity ought to be reflected in some of the TAAPS objectives.

Program Implementation Phase

Program Implementation

Program implementation is the set of activities done to provide the interventions via the structure developed to do so. One should note that this definition puts the interventions at the center with the program structure as the support required to deliver those interventions. Implementation begins after finalizing the TAAPS and TREW program goals and objectives, as well as the details and logistics about how the intervention will be provided. Implementation begins with the recruitment and enrollment of program participants or recipients. The actual recipients of the program are those who receive the intervention; participants actively partake in the intervention; and the program targets are those for whom the program is intended. Recipients is a more appropriate terminology when the intervention occurs at the population level and individuals receive the intervention without having to take any action, as would be the case in health policy or environmental change. Participants actively make a choice to be involved in the intervention and need to take some action to receive the intervention, whether that is scheduling a home visit or going to a grief management support group. These distinctions become helpful in determining numbers used as numerators and denominators to calculate program reach, as well as over-inclusion and under-inclusion of individuals in the program (Issel, 2014).

Implementation of a program often involves a number of individuals with different supportive skills and knowledge. The one who delivers the intervention must be trained and qualified to do so, whether that is a lay person (i.e., a doula) or a licensed health professional (i.e., RN or licensed clinical social worker [LCSW]). That person or team of professionals is expected to provide the intervention as developed and refined during the planning phase. Ostensibly, the intervention has been
developed to have the maximum potential benefit at a reasonable cost. The maximum benefit would be achieved by following the procedure that details how the intervention is to be delivered. Inputs that might be needed to provide the intervention include human resources (i.e., staff, volunteers, administrative personnel), physical resources (i.e., room, chairs, sphygmometer, handouts), money resources, marketing resources, managerial resources, operational or procedure manual, information systems resources, and time. The amount of each of these resources that is needed will be determined by the scope, duration, and intensity of the intervention and overall size of the program structure.

Implementation Monitoring and Evaluation

The old adage that nothing goes as planned applies to health programs. Thus, some attention must be given to how the program and the intervention are being implemented. The simplest approach is **implementation documentation**, which refers to tallying a count of the different activities and processes done to implement the program. Implementation documentation provides information regarding how much of what was done, but not on the quality of those activities. It includes a count of participants or recipients. The TAAPS objectives guide which activities are tallied for implementation documentation. It is the least expensive and the least intrusive approach. The next, more informative approach is **implementation assessment**, which occurs nearly in real time and is an ongoing act of gathering data about the implementation. The purpose of an implementation assessment is to determine whether timely corrections or modifications are required regarding the way in which the program is delivered or which resources are needed for the program. Implementation assessment is referred to as **process monitoring** in some program planning literature. Last of all, to determine both the extent to which the program and its interventions were delivered as designed and whether variations in the intervention delivery might alter the program effect, an **implementation evaluation** is conducted. Implementation evaluation, often referred to as **process evaluation**, involves systematic research and answers the questions regarding to what extent the program was delivered as intended and to which segments of the target audience. Implementation documentation, assessment, and evaluation can be done by trained staff, with much of the data collection integrated into routine information gathering about who participated and what was done. Once the data have been converted into a format for ease of inspection, such as graphs, charts, and tables, various stakeholders can assist in interpreting the data, particularly with reference to the TAAPS objectives. They can also make recommendations for improving the implementation of the intervention. For most programs, implementation monitoring activities will continue for the duration of the program, whether that is weeks or decades.

Caveats for nurse scholars regarding implementation monitoring are relatively few. Nurse scholars likely have insights into which intervention elements deserve the most attention, as well as relevant suggestions for keeping the intervention delivery true to the plan (i.e., implementation fidelity). Importantly, nurse scholars contribute to the scientific literature about program implementation. As demonstrated in Table 1.3, nurse scholars have contributed to the science of health program development, implementation, and monitoring. One example of implementation assessment is the study conducted by Goulet et al. (2009) regarding a program to prevent shaken baby syndrome. They assessed patients' perceptions of nurses' skill and comfort with
TABLE 1.3 Examples in the Published Literature of Health Program Development, Implementation, and Monitoring Related to Nursing

<table>
<thead>
<tr>
<th>Example</th>
<th>Pyramid Level</th>
<th>Purpose</th>
<th>Intervention</th>
<th>Process</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whittemore et al. (2013)</td>
<td>Individual</td>
<td>Assess implementation of a modified EB diabetes prevention program</td>
<td>Education in classes and behavioral support</td>
<td>Interviewed community health workers who delivered the intervention</td>
<td>Intervention protocol followed but program attendance declined over time</td>
</tr>
<tr>
<td>Mueller et al. (2009)</td>
<td>Individual</td>
<td>Implement an HIV risk reduction program and propose modifications</td>
<td>Culturally appropriate promotion of abstinence and condom use among Latino adolescents</td>
<td>Student feedback</td>
<td>Identified issues with parental involvement and student baseline knowledge</td>
</tr>
<tr>
<td>DeRosa et al. (2012)</td>
<td>Aggregate</td>
<td>Tailor action to improve school implementation of teen pregnancy and STD prevention intervention</td>
<td>School policy of making condoms available</td>
<td>Worked with schools to address program deficiencies at intervention</td>
<td>Across-time awareness and condoms acquired increased</td>
</tr>
<tr>
<td>Olds et al. (2013)</td>
<td>Aggregate</td>
<td>Improve existing nurse–family partnership program</td>
<td>Standardized nurse home visiting of first-time pregnant women</td>
<td>Mixed methods using existing program data and data from previous evaluations; staff interviews</td>
<td>List of possible improvements and challenges to making those improvements</td>
</tr>
<tr>
<td>Baisch (2012)</td>
<td>Populations</td>
<td>Document population-level interventions</td>
<td>Varied</td>
<td>Used an electronic health system</td>
<td>Demonstrated possible taxonomy of population-level nursing interventions</td>
</tr>
</tbody>
</table>

EB, evidence-based; STD, sexually transmitted disease.
the program interventions and of the intervention format. They then used those data
to determine how best to improve the program and the intervention delivery.

Measuring Health Program Effects: Evaluation Phase

Ultimately, we want to know whether the intervention made a difference and, if so,
by how much; in other words, we want an *effect evaluation*. The effect of a program
can occur over the short and long term. *Outcomes* refer to the more immediate effects
that can be linked to the intervention through a direct cause. In contrast, *impact*
refers to the more temporally and causally distant effects arising from the interven-
tion. To understand the effect of an intervention, focus must first be on the program
outcomes, with the program impact being assumed through logic and, perhaps, evi-
dence gathered over the long term.

As with implementation evaluation, understanding the link between the inter-
vention and outcomes can entail varying degrees of complexity and scientific rigor.
Each level of complexity addresses a slightly more sophisticated question about
the program outcomes and, thus, requires slightly more sophisticated scientific
approaches. The trade-off for having a greater ability to attribute an effect to the
intervention is that the design becomes more complex and, thus, more costly. The
most rigorous effect evaluation, an outcome evaluation, will likely be out of reach
for the majority of health programs and typically falls within the domain of evalu-
ation research.

Level 1 Effect Evaluation

A Level 1 effect evaluation answers the most basic question as to what the extent to
which of the outcomes, TREW, objectives were met. Data collection methods used
to conduct a Level 1 effect evaluation are chosen based on the health status indica-
tor within the TREW objectives. The Level 1 effect evaluation requires the least
effort, the simplest design, and does not go beyond determining that the TREW
objectives were met. Several designs would be considered Level 1 effect evaluation
designs: one group with post-test only, two or more groups with post-tests only, and
one group with pretest and post-test (Issel, 2014). As can be inferred from this list
of designs, the ability to make claims about changes being attributable to the inter-
vention does not exist. The methods typically used for Level 1 effect evaluations
would be survey or physical measures of participants or recipients, as indicated by
the TREW objectives.

The deficits of conducting a Level 1 effect evaluation are evident in the report by
Rantz et al. (2014). They evaluated the health outcomes of an aging in place inter-
vention that involved providing seniors with a set of interventions: ongoing care
coordination, health assessments, and exercise and strength training classes. Four
waves of data were collected annually about the health and cognitive status of par-
ticipants. The findings showed a decline in the outcome measures. Without a con-
trol group, the researchers were unable to determine whether the decline was less
than a normal aging trajectory for individuals in their mid-80s (Rantz et al., 2014).

Level 2 Effect Evaluation

A Level 2 effect evaluation seeks to answer whether an association exists between
participating in or receiving the intervention and an observable health status change.
The data collected will be the indicators as specified in the TREW objectives, but the time frame will likely refer to a period after the completion of the health program. The Level 2 effect evaluation goes a step further than Level 1 by adding methods and analyses that can identify a connection between the implementation data (intervention dosage) and the health status measure. A TREW objective that specifies a higher dose of intervention as being related to a greater change would require an effect assessment evaluation.

The design used to conduct Level 2 effect assessment evaluation would essentially be a pretest and a post-test to determine the amount of change within a given period. The majority of research designs are effect assessment designs. Specifically, the designs include two group retrospective (case control design), two group prospective (cohort design), one group time series, multiple group time series, two groups with pretest and post-test without random assignment to the intervention, and two groups with post-test only with random assignment (Issel, 2014). The design choice depends on whether the intervention is population or individual based and on whether a comparison group can be identified before the intervention. The measure(s) used for the evaluation must be sensitive to subtle changes and should have demonstrated validity and reliability with the participant or recipient population.

Level 3 Effect Evaluation

Finding an association between receiving the intervention and a health status change is not the same as being able to say that the program caused the health status change. A Level 3 effect evaluation seeks to attribute changes in health status to having received the intervention, and, thus, being able to say that the program, and nothing else, caused the changes. Accordingly, data collection and sample selection must be able to detect changes due to the program and other potentially influential factors that are not part of the program. This highly rigorous requirement makes a Level 3 effect evaluation similar to basic research (especially clinical trials) into the causes of health problems and the efficacy of interventions.

Only one design can answer the Level 3 effect evaluation question: two groups with random assignment to the intervention with both pretest and post-test intervention data collection from both groups. In other words, an RCT is necessary. The methods and data collection tools would likely be the same as for closely related Level 2 effect evaluation designs.

Caveats exist for nurse scholars regarding participation in effect evaluations of health programs. Nursing scholars have a role in conducting and disseminating health program effect evaluations (Table 1.4), and in doing so for programs that span the public health pyramid. Nonetheless, nurse scholars need to consider their role as both program implementers and evaluators. Being both is a potential conflict of interest. Nurse scholars bring a wealth of knowledge to evaluation regarding appropriate, reliable, and valid measures across a broad spectrum of health conditions and states. This information becomes an invaluable asset to a health program planning team. Furthermore, nurse scholars bring to a team a sensitivity about the target population, which might further inform both the evaluation design and the optimal data collection methods. Nurse scholars, however, need to act upon their confidence in developing programs and effect evaluations, and take a leadership role in furthering the science and evidence about how best to address the health problems.
Existing Practice-Based Methods for Clinical Inquiry

INTERPRETATION AND PRESENTATION OF SCHOLARSHIP PERTAINING TO PROGRAM PLANNING AND EVALUATION

Ethical Responsibilities

Nurse scholars engaged in health program planning, implementation evaluation, and especially effect evaluation must comply with the federal requirements for the protection of human subjects and the Health Information Portability and Accountability Act (HIPAA). The protection of human subjects, which often falls under the purview of institutional review boards (IRBs), becomes most salient if any possibility exists that a member of the health program team might desire to publish findings from any aspect of the health program. Gaining IRB approval for the project would involve having informed consents from the health program participants, and, perhaps, from program staff for process evaluations. All elements of informed consent would be required and, preferably, written at an eighth-grade level. The ethics of who is eligible to participate, how enrollment occurs, how the intervention is delivered, and whether benefits outweigh risks influence the program and intervention design. Thus, examining the ethics and possible scientific value of the program and its evaluation would most appropriately be considered during the planning stage. The program planners, program staff, and possible consultants need to plan for and incorporate the protection of human subjects into all aspects of providing the health program.

More specific to program evaluations, in 2011, the American Evaluation Association (AEA) established a set of five evaluation standards. The first standard is utility: The evaluation ought to be useful and valuable to stakeholders and future program planners. The second standard is feasibility: The evaluation must be doable and, thus, be both efficient and effective. The third standard is propriety:

TABLE 1.4 Examples in the Published Literature of Health Program Effect Evaluation Related to Nursing

<table>
<thead>
<tr>
<th>Example</th>
<th>Pyramid Level</th>
<th>Intervention</th>
<th>Evaluation Design</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koh, Nelson, and Cook (2011)</td>
<td>Individually</td>
<td>Cancer patient navigation to coordinate care</td>
<td>Matched historical controls (Level 2)</td>
<td>No significant differences between groups</td>
</tr>
<tr>
<td>Vasquez et al. (2010)</td>
<td>Aggregate, family</td>
<td>7-week parent-adolescent, curriculum-based family strengthening</td>
<td>Random assignment to control or experiment with pretest and post-test of both groups (Level 3)</td>
<td>Significant difference in some of the parenting outcome measures</td>
</tr>
<tr>
<td>Pence, Nyarko, Phillips, and Debpuur (2007)</td>
<td>Population</td>
<td>Four-arm, community-level, alternative organizational strategies for community health services</td>
<td>Trends based on 2 years pre-intervention and 4 years post-intervention (Level 2)</td>
<td>One intervention arm (locating nurses in villages for easy access) had the most effect on child mortality.</td>
</tr>
</tbody>
</table>
The evaluation must meet legal, moral, ethical, and just considerations. The fourth standard is accuracy: The evaluation must use valid and reliable measures and designs that increase the truthfulness and dependability of the findings. The last standard is evaluation accountability: The evaluation ought to be disseminated in a manner consistent with advancing the discipline of evaluation and the science about the health problem addressed by the health program. Each AEA evaluation standard applies to all evaluations, regardless of the discipline of the evaluator.

Reporting and Dissemination

Reporting responsibility includes considering what is needed and appropriate for each of the various health program audiences: community stakeholders, program and evaluation funders, lay and scientific journal editors, organizational members, and program personnel. Each will be expecting different information, and the information should be presented in language at a level of sophistication that they will understand. Often, an executive summary is part of the reporting. An *executive summary* presents the background, the accomplishments, and the next steps in a concise manner. Executive summaries ought to be less than four pages.

Reports stemming from either the program implementation or the effect evaluation will often include recommendations. Regardless of whether the recommendations focus on the program implementation or the program effect, developing recommendations should consider the following elements. First, be specific about which program objectives the recommendation addresses. Second, draw upon a variety of sources and resources to explain and justify the recommendation. Third, present a balance of recommendations asking for major changes along with recommendations for keeping what is working well. Fourth, contextualize the recommendations with information about external factors that are relevant or that need to be considered for implementing the recommendations. Lastly, make realistic and feasible recommendations from the perspective of the program personnel and the funder.

Nurse scholars have a responsibility to disseminate program evaluations, particularly Level 3 effect evaluations, to interdisciplinary health care audiences who have an interest in the health problem or interventions used to address that health problem. Implementation science, as an interdisciplinary effort, could benefit from the contributions of nurse scholars who have studied the effects of particular health programs. Accordingly, reports of both scholarly implementation evaluation and effect evaluation can be submitted to a wide range of health journals.

SUMMARY

The planning and evaluation of health programs benefits from the participation of nurse scholars, and nursing scholarship also benefits from that involvement. Table 1.5 provides a summary of key health program planning and evaluation terms. The population focus pervading the current health care environment creates new opportunities for nurse scholars to contribute significantly to health improvement of populations, not only individuals. Planning programs as mechanisms for the delivery of interventions to individuals, families, aggregates, or populations uses the assessment and organizational skills that accompany advanced graduate education. Through the formal evaluation of both the implementation of the health program
TABLE 1.5 Summary of Key Health Program Planning and Evaluation Terms and Corresponding Definitions

<table>
<thead>
<tr>
<th>Key Terms and Concepts</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect</td>
<td>The consequence, whether beneficial or harmful, of receiving the intervention</td>
</tr>
<tr>
<td>Level 1 effect evaluation</td>
<td>Quantifies the extent to which the outcome, TREW, objectives were met, without making any association or attribution to the program intervention: basic evaluation designs at the lowest cost and simplest information about the effect of a health program</td>
</tr>
<tr>
<td>Level 2 effect evaluation</td>
<td>Identifies associations between participating in or receiving the intervention and an observable health status change; the most common evaluation designs and available at the most reasonable cost</td>
</tr>
<tr>
<td>Level 3 effect evaluation</td>
<td>Establishes that receiving the intervention led to the health status change or that the program caused the health status change; most rigorous and costly evaluation of the effect of a health program</td>
</tr>
<tr>
<td>Effect objectives</td>
<td>Statements that focus on the benefits that program participants will achieve or experience; written in the TREW format</td>
</tr>
<tr>
<td>Evaluation research</td>
<td>The systematic, scholarly application of research methods to assess the extent to which a program was implemented and the magnitude of the intervention effect</td>
</tr>
<tr>
<td>Goals</td>
<td>Overarching statements about what will be achieved in the long term and in nonmeasurable terms</td>
</tr>
<tr>
<td>Impact</td>
<td>Temporally and causally distant consequences arising from having received the intervention</td>
</tr>
<tr>
<td>Implementation assessment; process monitoring</td>
<td>Nearly real-time and ongoing act of gathering data about the implementation</td>
</tr>
<tr>
<td>Implementation documentation</td>
<td>Tallying a count of the different activities and processes done to implement the program</td>
</tr>
<tr>
<td>Implementation evaluation; process evaluation</td>
<td>Systematic research and answers the question of to what extent the program was delivered as intended</td>
</tr>
<tr>
<td>Implementation science</td>
<td>Systematic study of the factors that influence the extent to which an evidence-based intervention can be put into routine practice</td>
</tr>
<tr>
<td>Intervention</td>
<td>Something done intentionally to have a beneficial effect on the participant or recipient</td>
</tr>
<tr>
<td>Objectives</td>
<td>Statements describing either the short- or long-term program achievements; these include measurement parameters for the accomplishments</td>
</tr>
<tr>
<td>Outcome</td>
<td>The immediate effects from the intervention</td>
</tr>
<tr>
<td>Participants</td>
<td>Individuals who make a choice to be involved in the intervention and need to take some action to receive the intervention</td>
</tr>
</tbody>
</table>

(continued)
and its effects, nurse scholars have an opportunity to contribute to the science of the health problem and to implementation science. These activities require that nurse scholars collaborate with interdisciplinary team members, various stakeholders in the health program, and the program participants or recipients. Cumulatively, nurse scholars have a responsibility to contribute by way of nursing theory, knowledge, and expertise to the health program planning and implementation.

REFERENCES

TABLE 1.5 Summary of Key Health Program Planning and Evaluation Terms and Corresponding Definitions (continued)

<table>
<thead>
<tr>
<th>Key Terms and Concepts</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process objectives</td>
<td>The statements describing what will be done by which program staff to what extent and within what time frame; written in the TAAPS format</td>
</tr>
<tr>
<td>Program</td>
<td>The mechanism and structure used to deliver an intervention or a set of synergistically related interventions</td>
</tr>
<tr>
<td>Program components</td>
<td>The separate structural and intervention elements that collectively comprise the program</td>
</tr>
<tr>
<td>Program evaluation</td>
<td>Application of scientific methods to determine the extent to which the program was implemented as planned and the extent to which the planned effect was achieved</td>
</tr>
<tr>
<td>Program fidelity</td>
<td>The extent to which the delivery and dosage of the intervention is consistent with the design of the intervention or with the evidence-based description of how to deliver the intervention</td>
</tr>
<tr>
<td>Program implementation</td>
<td>Set of activities done to provide the interventions via the structure developed to do so</td>
</tr>
<tr>
<td>Program planning</td>
<td>A set of actions that set priorities and decide on the logistics of the delivery of the intervention</td>
</tr>
<tr>
<td>Program stakeholders</td>
<td>Individuals, organizational members, or organizations involved in any aspect of the health program or who might be program participants or recipients</td>
</tr>
<tr>
<td>Public health pyramid</td>
<td>The inverse relationship between the effort and resources needed to make a change and the size of the group reached with the intervention</td>
</tr>
<tr>
<td>Recipients</td>
<td>Those who receive the intervention</td>
</tr>
<tr>
<td>Targets</td>
<td>Those for whom the program intervention is intended</td>
</tr>
<tr>
<td>Translational science</td>
<td>Field of study focused on understanding how to apply knowledge from basic, laboratory research to the creation of interventions provided to both individual patients and populations</td>
</tr>
</tbody>
</table>

TAAPS, time frame, amount, activities, program staff/participants; TREW, time frame, recipients, extent, which change.
Existing Practice-Based Methods for Clinical Inquiry

CHAPTER TEN

A STATISTICAL TOOLBOX: TIPS FOR ENGAGING IN CLINICAL INQUIRY TO IMPROVE HEALTH AND HEALTH CARE

LOUIS FOGG, BETH A. STAFFILENO, AND MARCIA MURPHY

OBJECTIVES

After reading this chapter, readers will be able to:

1. Identify statistical tools to address practice-based clinical problems and inquiry
2. Explain how the statistical tools can be implemented
3. Discuss why, when, and how to work with statisticians

Respect for rigor and integrity of data in clinical inquiry is paramount. Robust meaningful clinical inquiry necessitates a working knowledge of statistics and practical knowledge of the ins and outs of working with statisticians. Thus, the purpose of this chapter is to provide useful tips when using statistics and working with statisticians, as nurse scholars use data to generate and translate knowledge that aims at positively impacting patient care outcomes. Written by three faculty members, two nurse faculty members (M.M. & B.S.), and a statistician (L.F.), this chapter is divided into two key sections. In the first section, a statistical toolbox is presented to serve as a practical guide. In the second section, the statistician (L.F.) provides his unique perspective and advice on working with statisticians. As a faculty member in the Rush University College of Nursing spanning two decades, he has collaborated with many PhD and DNP nursing faculty and students and served as the statistician on more than 25 funded National Institutes of Health (NIH) grants.

This chapter is included in this book to serve as a reminder of the critically important role that data have in the field of clinical inquiry. Integrated into this chapter is somewhat of a storytelling approach. Discussing statistics can be quite a dry topic, but understanding the use of statistics in the context of clinical inquiry is much more interesting. Through the stories and examples of several clinical inquiry projects, the reader is provided with a toolbox for tackling his or her clinical inquiry data and working with statisticians.
THE STATISTICAL TOOLBOX

There are three tools in the statistical toolbox of this chapter. The first is conventional hypothesis testing, which is the “meat and potatoes” of most statistics courses. The second is the use of effect sizes and simple descriptive statistics to explain one’s findings. And finally, the third tool is the use of graphic representations to help learn about the relationships that exist in the data. With these three tools, it is possible to do two things: (a) learn how to make more useful clinical decisions; and (b) communicate findings more effectively to other clinical decision makers.

It is also important to keep in mind that the research conducted is not a “one size fits all” sort of enterprise. Nurse scholars use research to generate, disseminate, and translate new knowledge that is relevant to clinical inquiry. A statistical toolbox is needed because of the need for different tools for conducting and disseminating different types of nursing research and evidence-based practice.

The Counting Marbles Story

We begin with a background story that the statistician author (L.F.) of this chapter narrates about counting marbles. When a graduate student at the University of Chicago in the 1980s, he took several statistics courses and a recurring analogy that these courses used to analyze sampling and probability was the urns of marbles situation. The idea behind the urns of marbles is that you have two stone urns on a table, and you know that there are 70 red marbles and 30 green marbles in one urn, and 70 green marbles and 30 red marbles in the other urn. The problem is to draw samples of marbles from each of the two urns, and from these drawn samples of marbles, to determine the probability that urn one has the 70 reds or 70 greens. The idea behind the exercise is that if one is drawing a sample of marbles from the 70 red urn, one is more likely to have more red marbles in one’s sample. And the primary characteristic that these urns have is that marbles are independently distributed (the choice of one marble at random does not influence the selection of the next) and identically distributed (each marble has an equal chance of being selected). Or as statisticians like to call it, i. i. d. (independently and identically distributed). When these assumptions are met, conclusions about the marbles in the urn would apply equally well to the entire universe of marble-filled urns.

He soon discovered, however, that one cannot be a graduate student forever, and he was forced to go out and obtain gainful employment while conducting statistical analyses for a psychiatric research project. The project examined psychiatric patients in various and sundry stages of recovery from their illnesses. These were very ill patients who had been unresponsive to more conventional treatment settings, and so they were sent to this research laboratory in the hopes that they could find a more effective experimental treatment for themselves.

So, on his first day of work, he sat down to look at the data that needed to be analyzed. But, to his great surprise, there were no marbles. How could this be? He had just obtained an excellent education on the analysis of urns of marbles, only to find out that he was not studying marbles at all! He was forced to actually analyze data about people. But people are nothing like marbles.

To make matters worse, the data were not i.i.d.! The observations were not independent. In fact, the subjects all had to have a mental illness, live in Illinois, and be treatment resistant. It was a big, complex mess. Not knowing how he was supposed
to analyze data such as these is essentially one of the reasons he suggested writing this chapter for this book. Conducting nursing research is not only more complicated but also, in some ways, simpler than trying to characterize the number of different-colored marbles that are stored in an urn. Through evidence-based practice, nurses are trying to make clinical decisions for patients to maximize their well-being. Florence Nightingale, the first nurse researcher and statistician, made observations of soldiers returning from the Crimean War and reduced mortality rates from 43% (urn 1) to 2% (urn 2) by improving hygiene and environmental conditions (Palmer, 1977). This is, essentially, assuming that people are pretty much like marbles.

First Statistical Tool: Hypothesis Testing

The hypothetico-deductive model (Neyman & Pearson, 1992) underlies much of statistics in order to try to deduce what is true and what is not. The manner in which this is applied is that an assumption, called the null hypothesis, is made. The null hypothesis is the hypothesis that two populations of interest are not different from each other. So, for the urn example given earlier, the null hypothesis might be that there is the same proportion of red marbles in each of the two urns. It should be noted here that no statements are made to hypothesize how many red marbles are in each urn, but only that the proportion of red marbles (in our two-color marble universe—red/green) is the same.

To test this hypothesis, marbles are taken out of each urn. The drawn marbles are the sample. If the urns contain a very large number of marbles, a large sample can be drawn to get a better estimate of the proportion of red marbles in the urn. A parallel sample can be drawn from the other urn as well. Then, the magic of hypothesis testing is testing the null hypothesis that the two urns have the same proportion of red marbles. This is done by estimating the probability that the first sample (let us say there were 80 reds and 20 greens) is taken from an identically distributed urn as the second one (let us say there were 20 reds and 80 greens). This example represents a 2×2 contingency table that looks something like this (Table 10.1).

A chi-square test can be conducted to estimate the probability that the null hypothesis is true (proportion of red marbles in urn 1 equals the proportion of red marbles in urn 2). In this case, this probability is quite small ($p < .001$), and it uses a criterion probability of .05 to reject the null hypothesis that the two urns have equal proportions of red marbles. Furthermore, assuming red marbles are valued over green, urn 1 is preferred. If the marbles are relabeled as patients who recover (red marbles) and those who do not (green marbles) and the urns are relabeled as possible treatments for these patients, this pretty much describes how the hypothetico-deductive model is used in health care research.

There are a number of excellent books written about statistical analyses using the hypothetico-deductive theory. Fisher (1935/1971) wrote an excellent book on

Table 10.1 A 2×2 Contingency Table

<table>
<thead>
<tr>
<th>Urns</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red marbles</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>Green marbles</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>
all of this, and more recently, Snedecor and Cochrane (1989) also wrote an excellent textbook in this area. Finally, if you want to combine an education on the hypothetico-deductive theory with training on how to conduct statistical analysis in Excel, Schmuller (2013) wrote an excellent text called *Statistical Analysis With Excel for Dummies*.

So, how do the urns and marbles work in the real world of nursing practice? One way to illustrate this is by providing examples of clinical inquiry. So, essentially, instead of just talking about statistics, they are described in the larger context of studies that evolved from clinical practice and clinical inquiry. Each of the following four examples highlight how nurse scholars identified a problem, developed a project, and applied methodology and statistical tools to change practice and improve patient outcomes. Elements of these processes are outlined in Table 10.2.

Example 1: Clinical Inquiry About Taking Care of Older Adults

Identifying the Problem

The proportion of adults 65 years or older in the United States is rapidly growing and expected to reach 72 million during the next two decades (Centers for Disease Control and Prevention [CDC], 2013). As many as a third of these older adults experience hospitalizations that can pose consequences to functional well-being (Stranges & Friedman, 2009). Nurses are in a key position to evaluate system processes to improve patient outcomes. For example, it has been found that nursing staff are not always educated in geriatric patient needs and care, especially certified nursing assistants who have minimal training in special populations (Gilje, Lacey, & Moore, 2007). Therefore, this study was designed to examine the effects of a geriatric education for staff nurses and certified nursing assistants in conjunction with changes in daily staff practices to increase older patient mobility (Lee, Staffileno, & Fogg, 2013).

Methods to Address the Problem

A pre/post single-group study design was selected to address the research question and measure outcomes. Although a comparison or control group would have strengthened the design of the study, the nurse scholar determined that no other unit served a similar geriatric population; therefore, it was not feasible to employ a control group (unit within the hospital) for comparison. Instead, the single-group approach was possible by comparing discharge rate and hospital complications from the previous year to evaluate the effectiveness of the intervention. The intervention included staff education on geriatric care and infrastructural change to encourage patient mobility and function. Standard measures were used for evaluating outcomes of the intervention. For example, discharge destination and length of stay (LOS) were measured using the hospital’s clinical data system for patient information. Prevalence of nosocomial pressure ulcer and fall rates were obtained from the unit’s existing quality outcome measures. These outcome measures were compared from data with the same period in the previous year. Functional status was measured using the Katz activities of daily living (ADL) Index, which has established reliability and validity (Katz, Down, Cash, & Grotz, 1970). Upon hospital admissions, patients were queried about their ADL over the 2-week period just prior to admission, thus serving as a baseline assessment. Patients were again queried about ADL at the time of discharge to assess for functional status change during hospitalization.
TABLE 10.2 Developing a Practice-Based Clinical Inquiry Project

<table>
<thead>
<tr>
<th>What</th>
<th>How</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify a problem</td>
<td>● Clinical experience</td>
<td>● Have a strong interest in the problem</td>
</tr>
<tr>
<td></td>
<td>● The literature</td>
<td>● What is already known about this problem?</td>
</tr>
<tr>
<td></td>
<td>● Previous research</td>
<td>● Will the outcome improve quality of patient care and outcomes?</td>
</tr>
<tr>
<td></td>
<td>● National initiatives</td>
<td>● Will the findings be applicable in clinical practice?</td>
</tr>
<tr>
<td></td>
<td>● Organizational priorities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Quality and safety data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify a project team</td>
<td>● Establish what expertise is needed</td>
<td>● Who will best serve as the leader of the project?</td>
</tr>
<tr>
<td></td>
<td>to develop and execute the project</td>
<td>● How many people will be involved in developing and managing the project?</td>
</tr>
<tr>
<td></td>
<td>● Network with key stakeholders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Determine who is the most impacted by the problem</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop a project question</td>
<td>● Review the literature</td>
<td>● Compose an argument—what is the problem?</td>
</tr>
<tr>
<td></td>
<td>● Review pertinent data</td>
<td>● Who is the population of interest?</td>
</tr>
<tr>
<td></td>
<td>● Assess clinical relevance</td>
<td>● Why is the problem important? (Who are the key stakeholders?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● What will happen if you fix the problem?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● What will happen if the problem is not fixed?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop a methodology to address the problem</td>
<td>● Establish how to implement the project</td>
<td>● Having a clear method to address the problem is needed to determine a change</td>
</tr>
<tr>
<td></td>
<td>● Identify the population</td>
<td>● Having a mechanism for project evaluation is needed to establish sustainability</td>
</tr>
<tr>
<td></td>
<td>● Identify a site/location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Develop a protocol and procedures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Identify instruments for data collection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Identify necessary tools, instruments, and measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Establish how to evaluate the project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Create a plan for data management and analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use the statistical toolbox</td>
<td>● Look at your data</td>
<td>● To examine the nature of relationships and determine if your intervention works at all</td>
</tr>
<tr>
<td></td>
<td>● Describe your data using simple descriptive statistics</td>
<td>● To convince your reader that your treatment or intervention actually works</td>
</tr>
<tr>
<td></td>
<td>● Test statistical hypotheses</td>
<td>● To convince your reader that your results are not due to random fluctuations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discuss and disseminate findings</td>
<td>● Compose a description of project findings</td>
<td>● How does the project impact patient outcomes and extend existing knowledge?</td>
</tr>
<tr>
<td></td>
<td>● Present findings to key stakeholders and relevant venues</td>
<td>● Identify lessons learned</td>
</tr>
<tr>
<td></td>
<td>● Identify next steps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Publish findings</td>
<td></td>
</tr>
</tbody>
</table>
Consultation with a statistician was done to determine a sample size with adequate power to detect an increase in the percentage of patients returning home from hospitalization. Determination of sample size is typically a point that most clinicians will want to consult a statistician or an experienced researcher about. Another troublesome area for many is determining which statistics should be used given the type of data collected. In this case, demographic characteristics (age, gender, race, marital) were tabulated using descriptive statistics (means and standard deviations) or frequency distributions (percentages). With respect to data analysis, changes in outcomes with normally distributed mean scores, such as LOS, were compared using a paired t-test. Other outcomes involving changes using percentages or categorical data required the use of nonparametric testing. Therefore, change in ADL, rate of patients returning home, and the number of nosocomial pressure ulcers and fall rates were tested using chi-square analysis.

Pearls From the Toolbox

This is a wonderful example of how practicing nurse scholars can use nursing research to develop a new program to improve the health of patients. In addition, the hypothesis-testing tool was critical to demonstrate that the effect was robust, and it allows dissemination of this through a scholarly publication. In this case, a chi-square test demonstrated that the decrease in pressure ulcers (from 10.7% to 5.9%) was a statistically significant improvement, just as our two urns differed in the proportion of red marbles. (Yes—back to the counting marbles story!)

Lessons Learned From This Project

This study served as pilot work for subsequent inquiry that would involve implementing a research design with a control (or comparison) unit and randomization of patients. This preliminary work demonstrated that providing staff education and altering infrastructure support the transfer of knowledge to practice. Hence, promoting mobility and function improves outcomes for hospitalized older adults.

Second Statistical Tool: Effect Sizes and Simple Descriptive Statistics

The importance of finding an effect with a simple chi-square analysis is underscored here. Many statisticians will say that if you cannot find an effect with a chi-square test, it probably is not there. If the effect is that hard to find, it may not be worth much in the first place because the amount of benefit that a person will receive from the intervention is so negligible that it does not merit much time and energy. This point of view has led some researchers to begin reporting effect sizes, rather than probability statements. But what are effect sizes? One should read the Florence Nightingale story to fully understand how effect sizes matter when practice changes are needed (Box 10.1).

Example 2: Safe Patient Handling

Identifying the Problem

An advanced practice nurse (APN) determined that assessing staff perceptions of barriers and attitudes toward safe patient handling was paramount prior to introducing new lift equipment (Krill, Staffileno, & Raven, 2012). The APN wanted staff
to determine what handling equipment and education was needed to successfully develop a safe patient handling program.

Methods to Address the Problem

The APN proposed a descriptive study to assess staff perceptions, identify staff needs, and involve staff in selecting equipment for safe patient handling. The APN identified two widely used national survey instruments that would assess the following: (a) staff’s perceived barriers and attitudes regarding safe patient handling (Silverstein & Howard, 2006); and (b) staff’s needs for equipment and education (Safe Patient Handling Risk Assessment Tool Swedish Medical Center, 2007). To reach as many as possible, it was decided to administer the surveys by using an online platform. The two surveys combined consisted of 31 questions, used a Likert scale and open-ended questions, took about 15 minutes to complete, and were available for a 1-month period to accommodate staff who were taking summer vacation. Staff also participated in a 1-hour focus group. A focus group is a form of qualitative research that encourages people to express their perceptions, opinions, beliefs, and attitudes toward a particular topic. Finally, a 1-day fair was held to evaluate a variety of lift equipment from five vendors. After an equipment trial, staff were queried...
as to the comfort, ease of use, versatility, stability, ease of cleaning, and willingness to use the product. Descriptive statistics were used to describe sample characteristics, the narrative themes that the participants discussed in the focus groups, and the survey data from testing the equipment. In this manner, the optimal equipment was selected.

Pearls From the Toolbox
This is a marvelous use of descriptive statistics and how they can be utilized to facilitate effective nursing practice and contribute to the efficient use of resources.

Lessons Learned From the Project
This study illustrates the use of both survey data and focus group data to tap into the professional expertise of the entire staff of the institution.

Third Statistical Tool: Graphic Representations of Data
Looking at your data through graphic representations of the data can be powerful. Often, there are certain types of relationships that are easier to see as pictures than they are to estimate as statistics (Tukey, 1977). Pictures of the data can be very helpful in answering important questions in nursing research and clinical practice. Reviewing all the possible graphic ways to illustrate data is beyond the scope of this chapter, but an example using a dose–response curve will be given (DeLean et al., 1978).

The dose–response curve is explained here through an example of showing the dose of a medication that is optimal for a patient to receive. The curve is formed by two competing mechanisms: The effectiveness of the medication in reducing symptoms or treating an illness and the toxicity of the medication when given in doses that are too high. So, as the dose of the medication is increased from zero, the patient benefits from the therapeutic effects. And as long as the therapeutic benefits

![Dose–response curve](image-url)

Figure 10.1 Dose–response curve.
outweigh the toxicity of the medication, the dose can be increased. At some dose, the benefits begin to wane and the toxicity increases, at which point any higher doses will not be useful for the patient (Figure 10.1). The critical characteristics of dose–response curves are that they are quite common in health care research, and that the correlation between dose and benefit will be zero. Thus, as long as researchers restrict their examination of the relationships between their measures to the correlation coefficient, they will never be able to detect a dose–response relationship (Meehl, 1978). So, there is enormous power in looking at your data.

Example 3. Clinical Inquiry About Taking Newborn Temperatures

Identifying the Problem

Newborns undergo profound physiologic changes at the moment of birth. Thermoregulation is an important first step for the newborn infant to adjust to extrauterine life. The World Health Organization (WHO, 1997) views thermoregulation as an essential component of caring for the newborn infant. Nurses caring for neonates are responsible for monitoring newborn temperatures and providing care that decreases heat loss and prevents overheating. Common practice involves taking rectal temperatures on full-term newborns, even though risks are associated with this practice, including perforation of the gastrointestinal tract (Fonkalsrud & Clatworthy, 1965).

The evidence behind this practice was questioned, and a literature review and query of similar institutions was conducted. Many institutions were using axillary temperature measurements, whereas others were still using the rectal method, suggesting inconsistencies in practice. The safest and most effective practice of obtaining a temperature in newborn infants continues to be controversial (Friedrichs et al., 2013). Thus, the question remains unanswered. Is the evidence for using rectal temperature in full-term infants strong enough to continue with this practice?

Methods to Address the Problem

The team designed an agreement study to determine the reliability of the electronic thermometer measuring temperature in the axilla compared with the rectum in full-term newborn infants. The specific research questions included the following: (a) Do axillary temperatures agree with rectal temperatures, allowing axillary temperatures to be considered the preferred alternative to rectal temperatures? (b) Is there a preference in one axilla over the other based on the levels of agreement? A study protocol was developed and within the first hour of arriving to the newborn nursery, right and left axillary temperatures were obtained first, followed by the rectal temperature.

Demographic characteristics were reported using descriptive statistics (means and standard deviations). To examine the relationship between rectal and axillary temperatures, regression analyses were conducted. To assess the agreement between rectal and axillary temperatures, a graphical representation of the temperature data was analyzed using a Bland–Altman approach (Altman & Bland, 1983; Bland & Altman, 2007). The Bland–Altman approach looks at how closely scores agree and then examines clinical/demographic factors to see if any of them might have influenced the amount of disagreement that was found. The amount of disagreement is found by examining a scatterplot, where the distance between the points (each point represents a matched pair of observations) is the distance between the point and the equivalence line (Figure 10.2).
Pearls From the Toolbox
This study is an excellent illustration of the use of graphical representation of data to help explain relationships that may exist in the data. In this case, the Bland–Altman analysis (Altman & Bland, 1983) showed that both axilla could serve as sites for obtaining temperature data without loss of validity. In addition, this is also an excellent example of the use of a purposive sample. This study only works with newborns and so one is required to only choose participants from a select group, rather than from the general population. The comparison of rectal and axillary temperatures would not make sense in an adult sample.

Lessons Learned From This Project
Importantly, the clinicians challenged the status quo and searched for evidence supporting the clinical practice of rectal temperature taking in full-term newborns. The three basic tenets of evidence-based practice (research, clinical expertise, and patient preference) were used to investigate and draw conclusions for practice change. Results demonstrated that using the left axillary temperature measurements in full-term newborns was a safe alternative to rectal temperatures. This example reinforces the value of questioning current clinical practice by presenting evidence that may or may not support current practice.

The Statistical Toolbox
In most statistics courses, students only learn about the first tool (hypothesis testing) in the statistical toolbox. But for clinical inquiry research, it is important to use all three of the tools (Table 10.2). So, a quick and dirty guide to conducting statistical analysis is to use the tools in the following order. First, you should look at your data. If the data are nonlinear or have a funny distribution, this can make
A Statistical Toolbox: Tips for Engaging in Clinical Inquiry to Improve Health and Health Care

the statistics you calculate, even simple descriptive ones, completely useless. Again, you should think of the dose–response relationship.

Second, you should look at simple descriptive statistics. Remember how Florence Nightingale approached her data. She presented simple statistics that told her story. And finally, if there is clear evidence that you have an effect, but you want to present more compelling evidence to that effect, you should use hypothesis testing procedures to convince readers, or the audience, that your findings are real, as opposed to random findings.

One big advantage to this three-step process is that very often, our interventions or treatments just do not work. When this happens, it is usually easier to see this with a picture than it is to try to discover it from looking at summary statistics. There is much to be gained from learning what does not work, not the least of which is that it may, eventually, lead us to discover what does work.

Example 4: Using the Whole Toolbox

Cardiovascular disease (CVD) is the leading cause of death and disability in the United States with a disproportionate burden on racial/ethnic and underserved populations (Go et al., 2013). Moreover, CVD is the leading cause of death for older adults and the death rate attributable to CVD is greater for African Americans compared with Caucasians (Go et al., 2013). Sheltered homeless people constitute another vulnerable population that experiences significant health disparities (National Alliance to End Homelessness, 2013). This is particularly significant for clinicians working in such communities. The Heart Healthy Program (HHP) is an example of an APN-led initiative in such an underserved community setting. This example was the development and implementation of a HHP to improve the cardiovascular health of two underserved populations using the American Heart Association’s Life Simple 7/My Life Check (MLC) tool (Murphy, Coke, Staffileno, Robinson & Tillotson, 2015).

Methods to Address the Problem

Two inner city community sites were targeted for this program. One was a senior center servicing African American older adults, and the other was a residential facility for women with histories of substance abuse and homelessness. The determination of a tool to measure cardiovascular health was the first step in identifying important data to collect. Once that was established, a protocol was developed for data collection and analysis.

The American Heart Association’s Life Simple 7/MLC tool was identified as the measurement tool. The MLC tool provides a measure of overall cardiovascular health with a total score ranging from 0 to 10 based on four behavioral factors (maintaining a healthy weight, assessment of eating patterns, physical activity patterns, and smoking status) and three biomarker levels (blood pressure, blood cholesterol, and blood glucose). The MLC is a computer-based tool with an algorithm that calculates a weighted score using points based on multivariate associations with cardiovascular health (Murphy et al., 2015). Preprogram health data were collected to calculate the MLC scores.

All three statistical tools were used to describe the population and evaluate the outcomes of the HHP. Descriptive statistics (means and standard deviations) were used to describe the demographic characteristics (age, gender, and race). The mean MLC score was calculated both before and after the program was implemented to
conduct hypothesis testing to determine if the program improved health. Then, the effect size of the changes was calculated based on the mean scores to evaluate whether cardiovascular health improved as a result of the program. Specific data on each health factor were displayed in a table along with a chart that graphically displayed the percentage change in the mean aggregate MLC scores for each population's overall change in cardiovascular health. All this can be found in Murphy et al.'s (2015) referenced publication.

Pearls From the Statistical Toolbox

This aforementioned example is a good example of the use of all three of our statistical tools. Hypothesis testing was used to determine if there was significant improvement among the participants from pre- to post-intervention, descriptive statistics were used to characterize the participants in this project, and charts were used to visually describe the improvement in cardiovascular health. Not all translational research projects use all three of our tools, but in the previous example they were used very effectively.

Lessons Learned From This Project

Program evaluation plan is an essential step in planning and implementing an evidence-based program to improve cardiovascular health. In this example, the first step was the determination of a tool to measure cardiovascular health. Using an established tool that was developed by the American Heart Association was useful in that the tool had been applied to multiple epidemiological data sets. Pre- and post-program data collected were used to calculate the MLC score. Descriptive statistics, specifically percentage change, were useful to determine the effectiveness of the program. The benefits of the HHP were seen in the older adults who exhibited a 37.1% improvement in their MLC score. A similar benefit was not observed in the women at the residential shelter who experienced a 10.2% decrease in their MLC score. This may be due to a constellation of social, environmental, and mental health factors that are not yet fully understood (Murphy et al., 2015).

The Statistician: The Story of How This Statistician Got to Become a Faculty Member in an Academic Nursing Unit

This section of the chapter ends with the story of how the statistician (L.F.) coauthoring this chapter became a full-time faculty member in nursing. He first started working at the Rush University College of Nursing, because he needed employment. The college needed a part-time statistician to run numbers and help with research, and he needed someone to pay half of his salary.

Through Luther Christman, who was the dean at the college at that point, he was expertly tutored on the intricacies of nursing research. Since nursing research is much more complicated than this, he states his view of three key principles that underlie nursing research. The first principle is that the goal of nursing research is getting the patient better, or making his or her life better. Nursing theory guides research with a holistic paradigm focused on optimizing wellness.

The second principle is that nursing interventions tend to be relatively simple and effective. Thus, they tend to be very cost effective. So, for example, it is simpler to help patients develop positive health behaviors to avoid disease than it is to treat
most diseases once they are contracted. One big advantage of this principle is that it should make nursing research more useful to fund.

The third principle is that nursing research embraces both specialization of nursing knowledge and collaboration with researchers from a wide range of non-nursing fields. This is also consistent with Christman's (1965) view of nursing specialization as the path to expansion of knowledge in nursing. The ability of nurses to work with scholars from many different fields is one mechanism for advancing the breadth and depth of nursing knowledge.

This conceptualization of nursing research was what “hooked” this statistician (L.F.) on to the importance of conducting nursing research. This is the way the research was meant to be conducted. Intra-professional PhD–DNP (Doctor of Nursing Practice) research is very important as nursing goes forward in this century. Opportunities to make a difference through clinical inquiry are exciting. Data are plentiful; thus, using rigor in analysis is paramount, which often demands statistical services from a trained statistician. Tips on working with statisticians are described next.

WORKING WITH STATISTICIANS: WHAT NURSE SCHOLARS NEED TO KNOW

Working with statisticians, either as consultants or as collaborating researchers, can be a daunting experience. Statisticians seem to speak their own special language (e.g., heteroscedasticity) and very often do not seem to speak the language of nurse scholars very well. These issues can be quite frustrating when collaborating to conduct a research project. So, the purpose of this section is to present some guidelines to help a nurse scholar determine (a) if he or she needs the help of a statistician at all and (b) how to select the right statistician to work with. The good thing about putting a little work into this process at the start is that one can generally return to the same statistician for future projects. The time invested in the initial selection process can be time well spent.

Why write about this? There is actually quite a bit of literature on the role of statistical consultants in a number of social contexts (e.g., Bancroft, 1971; Boen & Zahn, 1982; Kimball, 1957; Kirk, 1991; Zabell, 2013); however, the interesting thing about the literature is that all of it was written by statisticians and directed to other statisticians. Although there is no problem with statisticians honing their communication skills, they do not have as difficult a task in selling themselves as consultants as the substantive scholar (e.g., doctorally prepared nurse) has in figuring out which statistician will be helpful. So with all due respect to my statistical colleagues and to their efforts to become a little more user friendly, it is dubious that becoming a user-friendly statistician is anywhere near as scary as being the user that the statistician is trying to befriend. And this, in a nutshell, is the purpose of this section—to introduce the innocent user to some of the perils and joys of working with a statistical expert.

When Is a Statistician Needed?

There are a couple of times when a statistician may not be needed. When primarily collecting narrative or qualitative data, a statistician either may not be needed at all or may only be needed for a very brief meeting or phone call. Generally, the statistics in narrative studies are fairly straightforward. The exceptions are mixed methods.
and narrative analyses where a scholar wants to examine inter-rater agreement. Many narrative analyses can be conducted without the benefit of a statistician.

The second type of study that may not require the aid of a statistician is one where the nurse scholar can conduct his or her own analyses. Amos Tversky is an example of a scholar who conducted his studies without a statistician. Tversky was a widely respected scholar whose papers were usually made up of two-by-two contingency tables that did not even present probability values with them (Tversky & Kahneman, 1981). He simply presented the frequencies and let the reader draw his or her own conclusions.

Tversky was a very eminent scholar. (For the rest of us, who are a bit less eminent, editors often want to see those probability statements. For us, it is often possible to conduct our own analysis.) There are often three ways to figure out how to conduct one's own analyses. The first is to find other published articles that are doing pretty much what you are doing, and seeing what statistical tests those authors use. Very often, nurse scholars already know how to run simple analyses. However, if it turns out that other articles are using complex or sophisticated models, this is a good indication that you might need to speak to a statistical expert.

The second method of learning about statistical modeling is to use the Internet. Although this should not be the sole source of statistical information, Wikipedia, for instance, is an excellent source of information on explaining simple statistical models in terms that may be understandable before delving deeper. Readers need to be aware that Wikipedia may not have correct information on complex or sophisticated models. But the Internet is a good place to start to learn about statistical modeling.

The third and final method of learning about statistical modeling is using a statistics textbook. Many statistical textbooks have been published over the years, but a recommended one for the non-statistician is written by Schmuller (2013) and is titled *Statistical Analysis With Excel for Dummies*. This little book has several virtues. For one, it is relatively inexpensive. For another, the author is an excellent writer and statistician. The book has simple examples of how to conduct simple statistical analyses using Excel. Because Excel is a commonly available computer program, it is a practical software application for many nurse scholars to use for data entry. The book also presents discussions of the many concepts that are central to statistical modeling (e.g., the normal distribution).

So, now that we discussed when we don’t need a statistician, when do we actually need a statistician? Often, the first time one may speak to a statistician is when data are collected, but one cannot figure out how to analyze them in order to make some sense of the data. This was actually this author’s (L.F.) journey to becoming a statistician (Box 10.2).

Another example when scholars often use a statistician is when writing or revising an article. Very often, editors or reviewers will recommend that you use a specific type of analysis, which may not be familiar, or specifically advise consultation with a statistician. In either case, it can be very helpful to speak with a statistician about these issues. Now, very often, statistical students can be helpful in collaborating on articles. Depending on the complexity of the study and data collected, it may be best to speak with a statistician who has a degree in statistics (either a master’s or a doctorate).

Consulting with a statistician is needed when applying for a research grant, especially a federally funded grant. Many funding agencies want to see a statistician on these grants. In addition, it is usually best to get a statistician who has a
doctorate, a history of working on federal grants, and a history of publishing research in the substantive area with which the grant is concerned. In general, grant writing is the area where it is the most imperative to develop a relationship with a senior statistician.

What to Look for When Choosing a Statistician

There are two key elements to look for when seeking a statistician—competence and understandability. A competent statistician is needed to conduct the required analyses. Understandability is needed with the statistician so that he or she conducts an analysis that actually answers the question that you want answered. The tricky bit is finding these two qualities in the same individual. This is not always an easy task.

Let us consider whether there is a licensure of the certification process for ensuring competence. Well, at present there is not. The American Statistical Association (ASA) has, on occasion, put forth the idea of licensing statisticians, but it has never come to pass. Part of the problem is that statistics has become an increasingly complex field of study. The advent of the microcomputer and the Internet has caused an enormous proliferation of different statistical models that are used to assess everything from physical activity levels related to electronic monitors to the genetic diversity of the human microbiome.

So, if there are no licenses or certificates, how does one know how competent a statistician is? The first piece of information to look at is the statistician’s curriculum vitae (CV) or résumé. In this document, there are three things that you can look at: education, publications, and grants. Of these, education is probably the most important. Statisticians coming out of top flight programs are probably going to be a little more skilled than those coming out of lower ranked programs. This is not a foolproof criterion, so you should look at the whole scholar before hitching your fortunes to someone.

The other excellent way to find a competent statistician is through referrals from colleagues. This method is a bit more dicey than looking at a résumé or CV. The problem with referrals is similar to finding a clinical expert. Are patients good judges of good clinicians? Not always. The problem is similar with statisticians. A colleague can think that a statistician is wonderful, but only because he or she does not understand the statistician’s flaws. But referrals are quite useful nonetheless. They are good for assessing competence, but they are even better for assessing understandability.

Box 10.2: This Statistician’s Story of His Journey to His PhD in Statistics

When I was working on a master’s degree, I became interested in assaults that occurred in prisons. I was able to collect a substantial amount of data on assaults by extracting information from the incident reports that one prison produced to describe these assaults. The database included location, severity, time, and actors involved with each assault. Unfortunately, after collecting these data, I did not know how to analyze them.

I ended up visiting a senior statistician. He took a look at my data and said, “You know, if you want to keep analyzing data like this, you should probably get a doctorate in statistics.” And I did exactly that. So, when you do not know what to do with your data, ask a statistician. It can help.
To elaborate on understandability, it is ideal to always work with statisticians who communicate clearly. This is vitally important for answering the most important questions. Generally, you should consider statistical hypotheses as the blueprints for any analysis. But it is no trivial matter to ensure that the statistical hypotheses that are tested are the ones that will answer the most important questions.

Improved understandability is one reason for trying to maintain a stable relationship with the same statistician over time. In general, the statistician will learn more about your research over time, and will, as a result, be better able to address the questions of interest. Again, the areas of inquiry that use statistical modeling have proliferated to such an extent that just being able to keep current of these fields can be quite time consuming. So, the ideal statistician is one with whom one maintains a long-term collaboration.

The other issue with understandability is that many statisticians go into mathematical modeling, because they may be more comfortable with numbers than they are with prose. One suggestion is that it is often helpful to try to communicate with the statistician both verbally and in writing. Very often, they do better in one medium than the other.

Part of the problem is the way that statisticians are trained. One paradigm for training statisticians is using the “urns full of colored marbles” analogy. Learning statistics with examples involving pulling samples of marbles from an urn in order to infer the nature of the population of marbles that are found in that urn could be problematic when humans rather than marbles are being studied in health research. Sometimes, it may take a while to get over marble training and to adapt to the study of human beings.

When Do You Need to Call a Statistician?

In general, you should call in the statistician as early as possible. Statistical data analysis is much easier to conduct when you know what data you will need, and the format that makes it easy to analyze. The problem here is that you can start out working on a project thinking that you will not need a statistician, and then discover later on that you do need one. One of the big advantages of developing a long-term relationship with a statistician is that often you can just call him or her, explain what you are doing, and have the statistician decide if you would benefit from some early advice. And how available this type of advice is to come by is a function of how easy it is to speak with a statistician.

How Much Should a Statistician's Time Cost?

Statisticians work either as salaried employees of an organization or as independent consultants. Organizations often hire statisticians; in this case, their cost may not be apparent, at least until they are requested to be on a grant. The difficulty that salaried statisticians have is that often colleagues imagine that their time is free, and thus can make use of it any way they like. This is actually not the case: Statisticians are not free. And when organizations do not limit access to them, they can develop overwhelming workloads that make their professional lives unpleasant.

The misuse of the statistician's time is pretty common. This author (L.F.), while still a graduate student, took a job doing statistical analyses in a medical research lab.
The director of the lab found out that L.F. actually enjoyed performing statistical analyses, and he started sending him requests for statistical analyses, all of which were handwritten on sheets of yellow legal paper. The faster L.F. performed the analyses, the more yellow-sheeted requests he received, until, finally, he had an inbox on his desk with several inches of these requests piled up there, very few of which were ever to be conducted.

Statistical analysis and modeling is a resource that you do not want to abuse. This is the other reason why we like to recommend that nurse scholars at least consider conducting their own analyses where possible. It makes for a more efficient use of the statistician's time when you really do need it.

But for the sake of clarity, the ASA (2014) reports salaries for academic statisticians. For the 2013 to 2014 survey, the salary for an assistant professor was around $83,000 for a 9-month contract and about $110,000 for a 12-month contract. These salaries rise to $92,000 and $127,000 for an associate professor and $110,000 and $147,000 for a full professor. This translates to a base salary of about $55 per hour for an academic salaried statistician.

If seeking a statistical consultant, the fees vary widely. Almost all ethical statisticians should provide a cost estimate up front. And although fees vary widely, in general, you should expect to pay at least $100 per hour for a PhD statistician, with fees ranging upward from there. Highly sought after consultants can charge as much as $500 per hour for their time, with many charging more. In general, a master’s-level statistician will charge at least $75 per hour and statistical consultants without advanced degrees start out at about $50 per hour. If money is an issue, most statistical consultants will use a sliding scale for researchers with limited resources, and many will perform pro bono work if the research represents a societal good. Most either help students pro bono or for very small amounts of money, and many work for charitable and nonprofit organizations for reduced fees.

How Much Expertise Is Needed From the Statistician?

As discussed earlier, there are three levels of a statistician: PhD statisticians, master’s statisticians, and statisticians without an advanced degree in statistics. The relative costs of each are quite different, and so it probably behooves one to use just as much expertise as is needed and not pay for more expert assistance than needed.

PhD statisticians have years of training and can work either in academia or in industry. Ideally, they have a deep understanding of a few areas of statistics and an ability to work in a much broader variety of areas of statistics. One good example of an area where a PhD statistician can prove useful is in the analysis of social networks. Social network analysis (SNA) involves analysis of how interconnected social networks are, as well as how engaged in the network each person is. Generally, if the nurse scholar is interested in examining the impact of social networks on a person’s health, a PhD statistician would be needed to figure out how to conduct these sorts of analyses. The other area where a PhD statistician is needed is in the arena of submitting grants, and sometimes in the submitting of papers.

Master’s statisticians are not quite as well trained as PhD statisticians, but they are very skilled. The past 20 years have seen a proliferation of programs designed to provide students with master’s-level training in statistics. These statisticians generally receive advanced training in terminal master’s programs and then receive
additional on-the-job training at the workplace. Often, they will be hired for a stable of statisticians sort of structure, where the stable of master's-level statisticians is overseen by one or two PhD statisticians. In such contexts, the master's-level statisticians can generally do one or two things very well (e.g., analyze randomized controlled trial [RCT] data), and have a reasonable knowledge of other areas of statistics. Master's-level statisticians can help write papers, although it may be a bit of a stretch to have them help write a grant, unless they have extensive experience doing so.

Statisticians without advanced degrees are, ideally, gifted analysts who can possess a somewhat unpredictable set of skills. Part of the unpredictability is that their training may not be curriculum based; as a result, they may not be intended to produce a specific type of statistical expertise. So the individual learns a lot of the material by the seat of his or her pants, so to speak. Ideally, these statisticians have a firm grasp of relatively simple, parametric models such as regression analysis or the analysis of variance, which can prove very useful for implementing evidence-based practice. Occasionally, a statistician without an advanced degree will have a publication history, and can be a material help in publishing papers. Thus, look at the type of analyses conducted in their published scientific papers for more insight into their analytical expertise. It is also important to remember that these levels of expertise are meant as guidelines, rather than as strict rules. An example of how misleading the degree a person possesses can misinform the reader is based on the 1964 Surgeon General's report (U.S. Public Health Service [PHS], 1964) on the health effects of smoking. The statistician on this report had only a master's degree, but the discussion of how one uses statistical analysis to draw causal inferences is absolutely brilliant and instrumental in changing the way that U.S. health care professionals look at smoking.

This 1964 report was lucidly written, because the master's-level statistician on the report was William G. Cochran, who, as it turns out, is one of the foremost experts on statistical modeling and causality. Cochran had a distinguished career, and the 1964 report was just at the start of it, before he had received his doctorate. And this is the moral of this story: The skills of the scholar are more important than the degree. It is true today, and it has always been true.

How Should a Statistician Be Accessed?

How do you actually get access to a statistician in an academic or other research setting? There are several models for getting a statistician to work with you; each model has its own strengths and weaknesses. The most effective method is to have a statistician on faculty or staff who is dedicated to working with members of the faculty. This is especially important in nursing, because nursing research tends to be a little difficult for many statisticians to understand.

The second method of providing statistical expertise is to use a stable of statisticians. Sometimes, this particular method of delivering statistical services is referred to as the Center for Statistical Excellence. One advantage of the Center for Statistical Excellence is that it avoids having to find a new statistician: If the one designated to your project cannot continue working on the project for a sundry of reasons (e.g. illness, other priorities), other statisticians are available to take his or her place. Another advantage is that it could be less expensive, because you can have a head statistician who has a PhD, and other master's-level statisticians who
work in collaboration with the head to make sure their work is of high enough quality. But there can be problems as well.

One problem with the Center for Statistical Excellence is that the statistician who helps you is often a bit of a hired gun, who does the work for one project and then moves on after being hired by the next scholar. Sometimes, this arrangement can mean that the statistician who works with the scholar does not really have much understanding of the phenomenon that is being studied. One can view statistics as a technical skill, and the models that the statistician uses as being interchangeable from one research context to another, but there are clear limits to this mode of thinking. The nurse scholar does not get the opportunity to build a relationship with a statistician who understands the conceptual underpinnings of the program of research. So, from the next project onward, it is back to square one explaining the conceptual theoretical underpinnings of nursing research. It can be exhausting and not very efficient.

The third structure for providing statistical resources is to set up a list of recommended statisticians who have been used by the school or facility and are known and trusted. This approach is especially useful in organizations where there are insufficient resources to hire a full-time or part-time statistician, but the need for statistical services still exists. The biggest advantage of this method of obtaining statistical resources is that if you do not especially like the interactions you had with the statistician, you do not have to use him or her again. Furthermore, if the consulting work amounts to a substantial amount of money over a year, then the statistician may be motivated to try to keep the various nurse researchers happy in order to facilitate future work. The downside to the recommended statistician choice is that most statisticians who work as consultants charge more, on an hourly basis, than one would have to pay in salary. So, for instance, if the PhD statistician would earn $60 per hour for his or her labor, as a consultant, he or she will generally charge two or three times more for hourly compensation. If you are using the statistician an awful lot, this can get very expensive. But if this occurs, you may be able to offer the statistician a job, and transition him or her into dedicated statisticians.

The last method of obtaining statistical help is the “I’m afraid you’re on your own, professor” approach. I do not know how many nursing programs use this approach, but it does not have much to recommend it, especially since the recommended statisticians approach discussed earlier is so much more useful. If you are working in this sort of an environment, I would recommend giving a copy of this chapter to your resource allocation decision maker. The amount of effort required to get a list of recommended statisticians (survey nurse researchers whom they have worked with successfully, obtain the CVs or résumés of the statisticians) seems so little compared to the substantial costs that can be associated with working with a difficult statistician that it seems logical to put this decision into the “no-brainer” category. Now that this opinion has been put into print, there is no doubt that it will be contradicted, but that is the nature of scholarship.

CONCLUSION WITH WORDS OF WISDOM FROM THE STATISTICIAN HIMSELF

This chapter closes with some final words on selecting a statistician from our statistician author himself (L.F.). The earlier discussion is concerned with the basic toolbox for statistics and choosing the best possible colleague to work with on nurse
scholarship. I will throw one more quality that I look for in all colleagues, be they statisticians or short-order cooks. Friedrich Nietzsche famously said, “I would only believe in a god who could dance” (Nietzsche & Ludovici, 1911). I am less demanding of my colleagues than Nietzsche is of his gods, but I do like to work with colleagues who can laugh. This enterprise of finding new meaning is supposed to be fun. I realize that it has serious, real-world implications for the health of our patients, and that all of that is very important, but the simple act of discovering how the world, this giant puzzle we are able to inhabit, works is pure fun.

And so I close this chapter with Plato’s parable of how we learn about the world as it is. When your soul was first created, the gods took you up on Mount Olympus and showed you the world as it really is. And then you drank from the river of forgetfulness (Halliwell, 2007). And to Plato, the discovery of new knowledge as we progress through our lives is actually just the jogging of your soul’s memory to remember what the god showed you, way back when. So I close this particular chapter with the wish that you may enjoy the rediscovery of all of the truth that we already know and the hope that a statistician can help you with that rediscovery.

REFERENCES

American Heart Association Life Simple 7. Retrieved from http://www.heart.org/HEARTORG/Conditions/My-Life-Check—Lifes-Simple-7_UCM_471453_Article.jsp

A Statistical Toolbox: Tips for Engaging in Clinical Inquiry to Improve Health and Health Care

