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Introduction for Students

Since it first appeared in 1996, the open-source programming language R has become increasingly popular as an environment for statistical analysis and graphical output. This book presents classical biostatistical analysis for epidemiology and related public health sciences to students using the R language. Based on the assumption that readers have minimum familiarity with statistical concepts, the author uses a step-by-step approach to building skills. The text encompasses biostatistics from basic descriptive and quantitative statistics to survival analysis and missing data analysis in epidemiology. Illustrative examples, including real-life research problems drawn from such areas as nutrition, environmental health, and behavioral health engage students and reinforce the understanding of biostatistics and how to perform these analyses using R. This student study guide suggests how to use this text in the classroom environment, assuming a 15-week semester, and approximately 3 to 4 hours of class time per week.
For each chapter in the text, learning objectives are suggested. Homework assignments are based upon the exercises provided for each chapter—included in the various sections within the chapters. For each chapter, we recommend a focus on the Learning Objectives, a thorough reading of the descriptive textual materials, with particular reference to the Illustrative Examples provided, and carrying out the exercises provided, which may also be considered as examination problems. As much as time will permit, reading assignments may be selected from the Recommended Reading Lists. As much as possible, prepare written summaries of what you have read for future reference. They will help you immensely in your understanding of the subject.
Special Advice to Students

____________________________

1.
Begin each chapter by first reading these study notes.
2.
Then refer to the materials in the book.
3.
If time permits, also consult the Recommended Reading List for the chapter.
4.
Complete the exercises following each section—answer (in writing) the questions posed—then consult the solutions provided.
Programming in R and the Worked Examples in the Text

____________________________

As learning to write programs in any computer language requires much insight into the syntax of that language together with substantial practice and experience, to meet this objective, many Worked Examples have been selected and included in the main body of the text. These examples should be considered an integral part of the text and should be carefully studied and fully understood. Indeed, for any given problem, there is no unique way to write a program in R (or in any other computer language) to solve a given problem.
Consider the famous problem (supposedly reported) that faced the famous German mathematician Johann Carl Friedrich Gauss (1777 – 1855). While in primary school, he was tasked to sum all the integers from 1 to 100:

1 + 2 + 3 + ( + 98 + 99 + 100
Young Gauss found the answer in a few seconds, to the astonishment of his teacher. One may wonder what computing strategy/algorithm was in the mind of this young lad.
Doubtless, one may find many algorithms to compute the answer to this simple problem, including the following:

1.
Algorithm I: By progressively adding two numbers at a time

1 + 2 = 3

3 + 3 = 6

6 + 4 = 10

----------------------

4753 + 98 = 4851
4851 + 99 = 4950

4950 + 100 = 5050
In the R environment, the following simple one-line code segment can do the same task:

> sum(1:100)

[1] 5050

Clearly, this approach may be preferred by a biostatistician familiar with the R code.
2.
Algorithm II: By using the summation formula of an arithmetic series
Sn = (n/2)(T1 + Tn)
= (100/2)(1 + 100)
= 50 × 101
= 5050

This approach may be preferred by an engineer who usually has a “Little Black Book,” namely a lifetime collection of useful and dependable formulas ready to be employed at a moment’s notice!

3.
Algorithm III: Young Gauss probably quickly realized that successive pairwise additions of terms, from opposite ends of the series, would yield identical intermediate sums, that is:
1 + 100 = 101,
2 + 99 = 101,
3 + 98 = 101,
------------------,

49 + 52 = 101,
50 + 51 = 101.
Hence, there are 50 intermediate sums, each of which is 101, for a total sum of 50 × 101 = 5050, which Gauss quickly and quietly submitted on a slate—on which he simply wrote: 5050.
For a genius like Gauss, who could mentally and readily envisage patterns in the abstract world of mathematics, this approach was by far the most natural and elegant way to find a solution to a problem.
Usually, there is no one single (or the best) way, or algorithm, for writing a program to solve any given problem. In fact, for any given computer language (R or otherwise), the most educationally sound approach to learn programming is simply to “do more programming.” Over time, and with experience, it usually becomes second lnature to program the solution to any given problem.

It is for this reason that many Worked Examples are included in each section of this text. They form an integral part of the book. Each example should be carefully studied in detail.
Overview of Course Learning Objectives
____________________________

Through formal lectures, class discussions, readings, practicing sessions, pop quizzes, written assignments, tests, and examinations, you will meet the following learning objectives:
1.
Understand the basic concepts of biostatistics.

2.
Understand, and effectively acquire a working knowledge and skill in, the R programming environment.

3.
Apply the R programming techniques in analyzing and solving biostatistical application problems in epidemiology, public health, and population medicine.
4.
Understand the scope of the R programming environment, including its many and varied features such as graphical applications, joint applications of R programming with other well-established programming environments (such as FORTRAN), as well as the vast support system in the rapidly growing worldwide community of R users, to effectively solve biostatistical problems in epidemiology, public health, and population medicine, especially when such undertakings are made more efficient by making use of the support available in other areas of mathematical and computer sciences.
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Introduction
Learning Objectives

____________________________
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To define the subject domains of medicine, population medicine, preventive medicine, public health, and epidemiology
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To understand the critical relationships, based on both historic and current investigations, as well as the close relationships between personal diseases and population medicine and public health


[image: image4]
To be familiar with the past and current research and measurements in epidemiology and public health
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To understand the contribution of biostatistics to epidemiology
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To understand and become efficient in using R in biostatistics when applied to the study and research of epidemiology and public health

Study Notes for Chapter 1

____________________________

Professionally, public health is the organized community efforts designed to prevent diseases and promote health. It combines many disciplines and depends on the science of epidemiology, which is the study of the demographics of disease processes including the study of epidemics. Thus, epidemiology is the study of the health and diseases of a population. The main objectives include finding out who suffers from a particular sickness and, hopefully, the reasons for such suffering. Some reasonable questions to ask are: Is that particular disease more prevalent among females or males, Whites or Blacks, old or young city folks, or country folks, etc.? Are there genetic factors, occupational factors, lifestyle habit factors, such as those involving tobacco and alcohol usage?
Compared with clinical and diagnostic medicine, which are concerned mainly with the health status (or diseases) of individuals, epidemiologic studies differ fundamentally as they seek to understand the health concerns of people groups rather than in a particular individual. Moreover, epidemiology is also concerned with the wellness, or general good health, of people groups. In other words, epidemiology is concerned with what makes people healthy as well as what makes people unwell. Thus, quite often in an epidemiologic investigation, one would maintain a control group of healthy people for comparison—as a control group. For example, people living in the identifiable Blue Zones (locations where there are a large number of people living healthily past the age of 100.).
Loma Linda, California, is a known Blue Zone spot.
Recommended Reading List
____________________________

 1.
http://en.wikipedia.org/wiki
2.
Charlton, B. G. (2001). Personal freedom or public health? In M. Marinker (Ed.), Medicine and humanity (pp 55–69). London: King's Fund. Retrieved from http://www.hedweb.com/bgcharlton/healthfreed.html
3.
White, E., Armstrong, B. K., & Saracci, R. (2008). Principles of exposure measurement in epidemiology: Collecting, evaluating and improving measures of disease risk factors (2nd ed.). Oxford, UK: Oxford University Press.

4.
Broadbent, A. (2009). Causation and models of disease in epidemiology. Studies in the History and Philosophy of the Biological and Biomedical Sciences, 40, 302–311. Retrieved from http://www.hps.cam.ac.uk/people/broadbent/models_of_
disease.pdf
5.
U.S. Department of Health and Human Services, Centers for Disease Control and Prevention(CDC), Office of Workforce and Career Development. (2006). Principles of epidemiology in public health practice: An introduction to applied epidemiology and biostatistics (3rd ed.) [Self-Study Course SS1000]. Atlanta, GA: Author.

6.
Dr. John Snow. Father of modern EPDM. Retrieved from http://www.ph.ucla.edu/epi/snow.html; http://www.hydroville.org/system/
files/u3/John_Snow_2_05.pdf
7.
Adventist Health Study-1 (AHS-1) and Adventist Health Study-2 (AHS-2). Retrieved from http://www.llu.edu/public-health/health/gathering.page; http://en.wikipedia.org/wiki/Adventist_Health_Studies
8.
Diabetes Health Center. The hemoglobin A1c (HbA1c) test for diabetes. Retrieved from http://diabetes.webmd.com/guide/glycated-hemoglobin-test-hba1c
9.
Edelman, D, Olsen, M. K., Dudley, T. K., Harris, A. C., & Oddone, E. Z. (2004). Utility of hemoglobin A1c in predicting diabetes risk. Journal of General Internal Medicine (JGIM), 19(12),1175–1180.

10.
Definition of terms may generally be checked from internet sources; for example, “Biostatistics.” Retrieved from http://en.wikipedia.org/wiki/Biostatistics
11.
Charles E. A. Winslow (1877–1957) was an American bacteriologist and a pioneering figure in public health in the United States and in the wider Western world. Retrieved from http://en.wikipedia.org/wiki/Charles-Edward_Amory_
Winslow
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Research and Design in Epidemiology and Public Health
Learning Objectives

____________________________
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To understand the relationships between causation and association in epidemiology and population medicine
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To understand the relationships between causation and association in epidemiology and public health
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To understand the relationships between causation and inference in epidemiology and population medicine
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To understand the relationships between causation and inference in epidemiology and public health
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To understand the biostatistical basis of inference
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To understand, and be efficient, in applying the techniques of biostatistics in epidemiology, population medicine, and public health

Recommended Reading List
____________________________

 1.
Loma Linda University, School of Public Health, Programs in EPDM. (2012). Retrieved from http://www.llu.edu/public-health/programs/mph-epdm-track2-research.page
2.
Rothman, K. J. (1998). Modern epidemiology. Boston, MA: Lippincott Williams & Wilkins. Rothman, K. J. (2002). Epidemiology: An introduction. New York, NY: Oxford University Press.
3.
(a) Austin, B. H. (1965). The environment and disease: association or causation? Journal of the Royal Society of Medicine, 58, 295–300. (b) Hills criteria of causation. Retrieved from http://www.drabruzzi.com/hills_criteria_of_causation.htm
4.
Epidemiology. Retrieved from http://en.wikipedia.org/wiki/Epidemiology
5.
U.S. Department of Health and Human Services, Centers for Disease Control and Prevention(CDC), Office of Workforce and Career Development. (2006). Principles of epidemiology in public health practice: An introduction to applied epidemiology and biostatistics (3rd ed.) [Self-Study Course SS1000]. Atlanta, GA: Author.

6.
Rothman, K. J. (1976). Causes. American Journal of Epidemiology, 104, 587–592.

7.
Rothman, K. J., & Greenland, S. (2005). Causation and causal inference in epidemiology. American Journal of Public Health, 95,(Suppl. 1), S144–S150.

8.
Broadbent, A. (2011). Inferring causation in epidemiology: mechanisms, black boxes, and contrasts. In P. M. Illari, F. Russo, & J. Williamson (Eds.), Causality in the sciences. Oxford, UK: Oxford University Press. Retrieved from http://www.hps.cam.ac.uk/people/broadbent/epidemiology_mechanisms_inference.pdf
9.
Ephron, E. (1984). Apocalyptics: Cancer and the big lie—How environmental politics controls what we know about cancer. New York, NY: Simon & Schuster.

10.
MacMahon, B. (1968). Gene-environment interaction in human disease. Journal of Psychiatric Research, 6, 393–402.

11.
Horwitz, R. I., & Feinstein, A. R. (1978). Alternative analytic methods for case-control studies of estrogens and endometrial cancer. New England Journal of Medicine, 299, 1089–1094.

12.
Null hypothesis. Retrieved from http://en.wikipedia.org/wiki/Null_hypothesis
13.
Pregnancy testing. Retrieved from http://www.fertilityfriend.com/Faqs/When-can-I-expect-a-positive-HPT-if-I-am-pregnant.html
14.
Alfthan, H., Björses, U. M., Tiitinen, A., & Stenman, U. H. (1993). Specificity and detection limit of ten pregnancy tests. Scandinavian Journal of Clinical Laboratory Investigation, 53(Suppl. 216), 105–113.

15.
Triola, M. M., & Triola, M. F. (2006). Biostatistics for the biological and health sciences. Boston MA: Pearson/Addison Wesley.

16.
Standard error. Retrieved from http://en.wikipedia.org/wiki/Standard_error_
(statistics)
17.
Steiger, J. H. A basic introduction to statistical inference. Retrieved from http://www.statpower.net/Content/310/A Basic Introduction to Statistical Inference.pdf
18.
Stöppler, M. C., & Shiel, Jr., W. C. (2012). Hyperkalemia (high blood potassium). http://www.medicinenet.com/hyperkalemia/article.htm
19.
Confidence intervals in public health. Retrieved from http://health.utah.gov/opha/IBIShelp/ConfInts.pdf
20.
Bayesian credible interval and frequentist confidence interval. Retrieved from http://en.wikipedia.org/wiki/Credible_interval; http://www.iejme.com/
032009/P16/IEJME_p16_glossary_E.pdf
21.
Student’s t-distribution. Retrieved February 13, 2009, from http://en.wikipedia.org/wiki/File:Student_densite_best.JPG
22.
Biostatistics. Retrieved from http://en.wikipedia.org/wiki/Biostatistics
23.
University of Sydney, Australia, School of Public Health Program (2012). Retrieved from http://sydney.edu.au/medicine/public-health/clinical-epidemiology-structure
24.
Chongsuvivatwong, V. Analysis of epidemiological data using R and Epicalc. Epidemiology Unit, Prince of Songkla University, Thailand. Retrieved from https://cran.r-project.org/doc/contrib/Epicalc_Book.pdf
25.
Aragon, T. J. (2013). Applied epidemiology using R. University of California, Berkeley, School of Public Health and San Francisco Department of Public Health, Berkeley, California. Retrieved from http://www.tbrieder.org/epidata/course_
reading/e_aragon.pdf
26.
Rubin, D. B. (2010). A small sample correction for estimating attributable risk in case-control studies. The International Journal of Biostatistics, 6(1), 32. doi:10.2202/1557-4679.125

27.
Binomial calculator: Online statistical table. Retrieved from http://stattrek.com/tables/binomial.aspx
28.
The central limit theorem. Retrieved from http://en.wikipedia.org/wiki/Central_
limit_theorem
29.
Lyapunov’s central limit theorem. Retrieved from http://www.enotes.com/
topic/Lyapunov’s_central_limit_theorem
30.
Confidence interval: Proportion. Retrieved from http://stattrek.com/lesson4/
proportion.aspx
31.
Lachin, J. M. (2011). Biostatistical methods: The assessment of relative risks (Wiley Series in Probability and Statistics). Hoboken, NJ: Wiley.
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Data Analysis Using R Programming
Learning Objectives

____________________________
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To understand the relationship between data and processing
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To get an understanding of the R environment
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To use R as a calculator
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To use R in data analysis in biostatistics
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To understand and practice univariate, bivariate, and multivariate data analysis

Sample Answers for Review Questions for Section 3.2
____________________________

1.
Let us get started! Please follow the step-by-step instructions given in the opening paragraphs of Section 3.2 to set up an R environment. The R window show look like this:

>

Now enter the following arithmetic operations; remember to press “Enter” after each entry:

(a) 2 + 3 <Enter>

(b) 13 – 7 <Enter>

(c) 17 * 23 <Enter>
(d) 100/25 <Enter>10/25

(e) Did you obtain the following results: 5, 6, 391, 4?

2. 
Here are a few more. (The <Enter> prompt will be omitted from now on.)
(a) 2^4 (Answer: 8)

(b) sqrt(3) (Answer: 1.7321)

(c) 1i [1i is used for the complex unit i, where i2 = –1.] (Answer: i)

(d) (2 + 3i) + (4 + 5i) (Answer: 6 + 8i)

(e) (2 + 3i) * (4 + 5i) (Answer: –7 + 22i)

3.
Here is a short session on using R to do complex arithmetic. Just enter the following commands into the R environment and report the results:
> th <- seq(-pi, pi, len=20)
> th
(a) How many numbers are printed out? (Answer: 20)

[1]  -3.1415927  -2.8108987 -2.4802047 -2.1495108 -1.8188168 -1.4881228

[7]  -1.1574289  -0.8267349 -0.4960409 -0.1653470   0.1653470  0.4960409

[13]  0.8267349   1.1574289  1.4881228  1.8188168   2.1495108  2.4802047

[19]  2.8108987   3.1415927

(b) How many complex numbers are printed out? (Answer: 20)

> z <- exp(1i*th)

> z

[1] -1.0000000-0.0000000i -0.9458172-0.3246995i -0.7891405-0.6142127i

[4] -0.5469482-0.8371665i -0.2454855-0.9694003i  0.0825793-0.9965845i

[7]  0.4016954-0.9157733i  0.6772816-0.7357239i  0.8794738-0.4759474i

[10]  0.9863613-0.1645946i  0.9863613+0.1645946i  0.8794738+0.4759474i

[13]  0.6772816+0.7357239i  0.4016954+0.9157733i  0.0825793+0.9965845i

[16] -0.2454855+0.9694003i -0.5469482+0.8371665i -0.7891405+0.6142127i

[19] -0.9458172+0.3246995i -1.0000000+0.0000000iz <- exp(1i*th)

> par(pty="s")
(c) Along the menu-bar at the top of the R environment:

[image: image18]
Select and left-click on “Window”, then
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Move downward and select the second option:

R Graphic Device 2 (ACTIVE)
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Go to the “R Graphic Device 2 (ACTIVE) Window”

(d) What is there?

Answer: A graphical frame is being prepared
[image: image21.png]



FIGURE S3.1 Graphical frame.
> plot(z)

(e) Describe what is in the Graphic Device 2 Window. A plot is provided:
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Figure S3.2 Graphical plot of complex domain.
Answers to Exercises for Section 3.3
____________________________

Enter the R environment, and do the following exercises using R programming:
1.
Perform the following elementary arithmetic exercises:

(a) 7 + 31; (b) 87 – 23; (c) 3.1417 × (7)2 ; (d) 22/7; (e) e√2
> 7 + 31

[1] 38

> 87 - 23

[1] 64

> 3.1417 * 7^2

[1] 153.9433

> 22/7

[1] 3.142857

> exp(sqrt(2))

[1] 4.11325

Answers: (a) 38; (b) 64; (c) 153.9433; (d) 3.142857; (e) 4.11325
2.
Body mass index (BMI) is calculated from your weight in kilograms and your height in meters. Assuming you weigh 155 lb and are 5 ft 8 in. tall:
BMI = kg/m2
Using 1 kg ≈ 2.2 lb and 1 m ≈ 3.3 ft ≈ 39.4 in.
(a) Calculate your BMI.
> (155/2.2)/((5 + 8/12)/3.3)^2

[1] 23.8936

Answer: BMI = 23.8936, which is “normal.”

(b) Is it in the “normal” range 18.5 ( BMI ( 25? Answer: Yes.
3.
In the MPH program, five graduate students taking the class in Introductory Epidemiology measured their weight (in kilograms) and height (in meters). The result is summarized in following matrix:


John
Chang
Michael
Bryan
Jose

WEIGHT
69.1
62.5
74.3
70.9
96.6

HEIGHT
1.81
1.46
1.69
1.82
1.74

(a) Construct a matrix showing their BMIs as the last row.

>

> x <- 1:15

> x

 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

In the R space:

>

> dim(x) <- c(3, 5)
> x

     [,1]  [,2]  [,3]  [,4]  [,5]

[1,]    1    4     7    10   13

[2,]    2    5     8    11   14

[3,]    3    6     9    12   15

> colnames(x) <- c("John", "Chang", "Michael", "Bryan", "Jose")

> x

    John Chang Michael Bryan Jose

[1,]  1         4            7         10       13

[2,]  2         5            8         11       14

[3,]  3         6            9         12       15

> x[1,1] = 69.1

> x[1,2] = 62.5

> x[1,3] = 73.4
> x[1,4] = 70.9

> x[1,5] = 96.6

> x

>

> x[2,1] = 1.81

> x[2,2] = 1.46

> x[2,3] = 1.69

> x[2,4] = 1.82

> x[2,5] = 1.74

> x

       John  Chang  Michael  Bryan  Jose

[1,] 69.10    62.50      73.40    70.90   96.60

[2,]    1.81     1.46        1.69      1.82     1.74

[3,]    3.00     6.00        9.00     12.00  15.00

> x[3,1] = 69.10/(1.81)^2

> x[3,1]

John
21.09215
> x[3,2] = 62.5/(1.46)^2

> x[3,2]

Chang
29.3207
>

> x[3,3] = 74.3/(1.69)^2

> x[3,3]

Michael
26.0145
> x[3,4] = 70.9/(1.82)^2

> x[3,4]

Bryan
21.40442
> x[3,5] = 96.6/(1.74)^2

> x[3,5]

Jose
31.90646
> x

            John    Chang   Michael      Bryan        Jose

[1,] 69.10000   62.5000   73.4000   70.90000   96.60000

[2,] 1.81000     1.4600     1.6900     1.82000     1.74000

[3,] 21.09215   29.3207   26.0145   21.40442   31.90646

>

(b) Plot:
(i) WEIGHT x[1, ] (on the y-axis) vs. HEIGHT x[2, ] (on the x-axis)

> plot(x[2, ], x[1, ])

Outputting:
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Figure S3.3 Graphical plot of weight x[1, ] vs. height x[2, ].
(ii) HEIGHT x[2, ] (on the y-axis) vs. WEIGHT x[1, ] (on the x-axis)

> plot(x[1, ], x[2, ])

Outputting:
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Figure S3.4 Graphical plot of height x[2, ] vs. weight x[1, ].
(iii)
Assuming that the weight of a typical “normal” person is (21.75 × HEIGHT2), superimpose a line of “expected” weight at BMI = 21.75 on the plot in (i).

(a) For a “normal” person: WEIGHT = 21.75 × (HEIGHT)2
(b)
or: HEIGHT = (WEIGHT/21.75)1/2
In the R space:

(a) WEIGHT = 21.75 × (HEIGHT)2
> plot(x[2, ], x[1, ])

> lines(x[2, ], 21.75*(x[2, ]^2))
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Figure S3.3A Graphical plot of weight x[1, ] vs. height x[2, ]: “normal” people are located on or below the line.
(b) HEIGHT = (WEIGHT/21.75)1/2
> plot(x[1, ], x[2, ])

> lines(x[1, ], sqrt(x[1, ]/21.75))
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Figure S3.4A Graphical plot of height x[2, ] vs. weight x[1, ]: “normal” people are located on or above the line.
4.
(a)
To convert between temperatures in degrees Fahrenheit (F) and Celsius (C), the following conversion formulas are used:

F = (9/5)C + 32

C = (5/9) × (F – 32)

At standard temperature and pressure, the freezing and boiling points of water are 0 and 100 degrees Celsius, respectively. What are the freezing and boiling points of water in degrees Fahrenheit?

SOLUTION:
(a)
(i) Freezing point of water in degrees Fahrenheit:

F = (9/5)C + 32

= (9/5)(Freezing point in degrees C) + 32

= (9/5)(0) + 32

= 0 + 32

= 32 degrees F

(ii) Boiling point of water in degrees Fahrenheit:

F = (9/5)C + 32

= (9/5)(Boiling point in degrees C) + 32

= (9/5)(100) + 32

= 180 + 32

= 212 degrees F

(b)
For C = 0, 5, 10, 15, 20, 25, ..., 80, 85, 90, 95, 100, compute a conversion table that shows the corresponding temperatures.
Note: To create the sequence of Celsius temperatures use the R function
seq(0, 100, 5).

In the R space:

> C <- seq(0,100,5)

> C

[1]   0   5  10  15  20  25  30  35  40  45  50  55  60  65
     70  75  80  85  90

[20]  95 100

> F <- (9/5)*C + 32
> F

[1]  32  41  50  59  68  77  86  95 104 113 122 131 140
149 158 167 176 185 194

[20] 203 212

>

5.
Use the data in Table 3.1.Assume a person is initially HIV-negative. If the probability of getting infected per act is p, then the probability of not getting infected per act is (1 − p). The probability of not getting infected after two consecutive acts is (1 − p)2 and the probability of not getting infected after three consecutive acts is (1 −p)3. Therefore, the probability of not getting infected after n consecutive acts is (1 − p)n and the probability of getting infected after n consecutive acts is [1 − (1 − p)n].

(a)
For the non-blood transfusion transmission probability (per act risk) in Table 3.1, calculate the risk of being infected after 1 year (365 days) if one carries out needle-sharing injection-drug use (IDU) once daily for 1 year.

(b)
Do these cumulative risks seem reasonable? Why? Why not?

	Table 3.1 Estimated Per-Act Risk (Transmission Probability) for Acquisition of HIV by Exposure Route to an Infected Source

	Exposure route
	Risk per 10,000 exposures

	Blood transfusion (BT)
	9,000

	Needle-sharing injection-drug use (IDU)
	67

	Source: CDC[


SOLUTION:

> p <- 67/10000

> p

[1] 0.0067

> q <- (1 - p)

> q

[1] 0.9933

> q365 <- q^365

> q365

[1] 0.08597238

> p365 <- 1 - q365

> p365

[1] 0.9140276

=> Probability of being infected in a year = 91.40%. A high risk, indeed!
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Graphics Using R
Learning Objectives

____________________________
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To understand base (or traditional) graphics in the R environment 
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To apply R graphics to typical problems in biostatistics
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To understand, and apply, Grid Graphics in the R environment

Exercises for Section 4.1

____________________________

1.
Using R as a calculator, compute the answers to the following:
(a)
1 + 2
> 1 + 2 = 3
(b)
13 – 5
> 13 – 5 = 8
(c)
17 × 29
> 17*29 = 493
(d)
851/37
> 851/37 = 23
(e)
(3.1416)2
> 3.1416^2 = 9.86951
(f)
π2
> pi^2 = 9.869604
(g)
e-3
> exp(-3) = 0.04978707
(h)
√(112 – 4 × 3 × 7)
> sqrt(11^2 1 4*3*7) = 6.082763
(i)
log10(1234567)
> log(123456)/log(10) = 6.091515
(j)
sin2(30°)
> (sin((30/180)*pi))^2 = 0.25

2.
Blood pressure is the pressure of the circulating blood against the walls of the blood vessels. It results from the systole of the left ventricle of the heart and is measured as part of an evaluation of a person's health. Adult blood pressure is considered normal at 120/80, where the first number is the systolic pressure and the second is the diastolic pressure.

The systolic pressure is measured during the contraction of the left ventricle of the heart, and the diastolic pressure is measured after the contraction of the heart while the chambers of the heart refill with blood.
The following is the measured systolic pressure of Patient A taken daily for 10 consecutive days:

145, 150, 135, 140, 160, 170, 138, 168, 155, 165

(a) Enter these 10 readings into the variable bpsystolic.

(b) Use the function diff() on this variable. What do the results mean?

(c) Use the command mean(bpsystolic). What do the results mean?

(d) Use the command mean(diff(bpsystolic)). What do the results mean?

ANSWER:

In the R space:

>
> bpsystolic <- c(145, 150, 135, 140, 160, 170, 138, 168, 155,
+                        165)

> bpsystolic # Outputting for checking!
[1] 145 150 135 140 160 170 138 168 155 165

>

> diff(bpsystolic)

[1]   5 -15   5  20  10 -32  30 -13  10

>

> # In this vector, the elements are the consecutive differences of the daily measured 
> # systolic blood pressures of the patient.
>

> mean(bpsystolic)

[1] 152.6

>

> # This is the arithmetic mean of the measured systolic blood pressure on those 10 
> # consecutive days.
>

> mean(diff(bpsystolic))

[1] 2.222222

> # This is the arithmetic mean of the consecutive differences of the daily measured 
> # systolic blood pressure of the patient, taken over those 10 consecutive days.
>

3.
boxplot()
Using this function, enter the 10 blood pressure readings and obtain a plot of these 10 readings (see Figure 4.24).
>
> boxplot(145, 150, 135, 140, 160, 170, 138, 168, 155, 165)

> # Outputting Figure 4.24
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Figure 4.24 Boxplot of 10 blood pressure readings.
4.
CDC (Centers for disease Control) Health Survey, 1971 to 2000: Four successive National Health and Examination surveys for a population of male subjects in their 20s showed that the average amount of daily calories intake was:

2450, 2439, 2866, 2618
The percentage of calories from fat was 37.0%, 36.2%, 34.0%, 32.1%. The percentage of calories from carbohydrates was 43.1%, 42.2%, 50.0%, 48.1%.

(a)
Is the average number of fat calories increasing or decreasing?

(b)
Is this result consistent with the information that, over the same time period, the prevalence of obesity in the country increased from 14.5% to 30.9%?

ANSWER:

(a)
For the four surveys, the respectively number of calories from fat are:

2450 × 37% = 906.5

2439 × 36.2% = 882.9

2866 × 34.0% = 974.4

2618 × 32.1% = 840.4

Thus, while the percentage calorie intakes from fat decrease consistently over the years 1971 through 2000, the total number of fat calorie intakes showed some fluctuations: 906.5 ( 882.9 ( 974.4 ( 840.4.
(b)
This result is not inconsistent consistent with the information that, over the same time period (1971 through 2000), the prevalence of obesity in the country increased from 14.5% to 30.9%, as the trend of the TOTAL caloric intakes appear to show an increasing trend.
5.
Again, for the data in Exercise 4, use the function boxplot() to write down the three commands to obtain plots of the relative levels of (a) calories, (b) % calories from fat, and (c) % calories from carbohydrates.
> boxplot(2450, 2439, 2866, 2618)
> boxplot(37.0, 36.2, 34.0, 32.1)

> boxplot(43.1, 42.2, 50.0, 48.1)

(The results are shown in Figures 4.25-1, 4.25-2, and 4.25-3.)
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Figure 4.25-1 Total calories for four tests.
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Figure 4.25-2 Percentage calories from fat for four tests.
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Figure 4.25-3 Total calories from carbohydrates for four tests.
6.
The following are some data on accident rates by age group. The age groups are: 0–4, 5–9, 10–15, 16, 17, 18–19, 20–24, 25–59, and 60–79 years old. The recorded data are summarized as follows:

> group.midage<-c(2.5, 7.5, 13, 16.5, 17.5, 19, 22.5, 44.5, 70-5)

> accidents <- c(28, 46, 58, 20, 31, 64,149, 316, 103)

Combine these two parameters as follows:
> age.acc <- rep(group.midage, accidents)

Note: The function rep(x) replicates the values in x.

Now, define the break points as follows:
> breakpoint <- c(0, 5, 10, 16, 17, 18, 20, 25, age.acc

60, 80)

Plot a histogram of the parameter age.acc to display the distribution by age groups as follows:

> hist(age.acc, breaks=breakpoint)

and obtain the histogram of the age.acc factor.
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Figure 4.26 Histogram of the age.acc parameter.
7.
In the package HSAUR is a dataset water, which is a record of 61 towns in England with information about the marginal distributions of water hardness (concentration of calcium) and mortality.

(a)
Access this dataset by:
> data("water", package="HSAUR")

(b)
Examine the dataset by:
> water

(c)
Obtain a scatter plot of mortality vs. hardness by:
> plot (data = water)

(d)
Plot the linear regression line of mortality vs. hardness by:
> abline(lm(mortality ~ hardness, data = water))

(e)
Add a legend table on the top-right corner of the graph by:
> legend("topright", legend = levels(water$location),
+              pch=c(1, 2), bty= "n")

(f)
Display a histogram of water vs. hardness by:
> hist(water$hardness)

(g)
Show a boxplot of water vs. mortality by:
> boxplot(water$mortality)

(The results are shown in Figures 4.27-1–4.27-5.)
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Figure 4.27-1 Mortality vs. water hardness.
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Figure 4.27-2 Mortality vs. water hardness with regression line.
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Figure 4.27-3 Mortality vs. water hardness with regression line, with legend.
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Figure 4.27-4 Histogram of mortality vs. water hardness.
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Figure 4.27-5 Boxplot of data.
8.
Displaying multivariate data.
In a Danish study on the effect of screening for breast cancer published in Olsen, A. H., et al. (2005). Breast cancer mortality in Copenhagen after introduction of mammography screening. British Medical Journal, 330, 220–222, four groups or cohorts were collected:

(i)
The “study group,” consisting of the population of women in the appropriate age range in Copenhagen and Frederiksberg after the introduction of routine mammography screening

(ii)
The “national control group,” consisting of the population in the parts of Denmark in which routine mammography screening was not available
These two groups were collected in 1991–2001.
(iii)
The “historical control group” and
(iv)
The “historical national control group”
which are similar cohorts from 10 years earlier, before the introduction of screening in Copenhagen and Frederiksberg. The study group comprises the entire population, not just those accepting the invitation to be screened.

(a)
Examine the dataset, using the following R code segment:

> install.packages("ISwR")

> library("ISwR")

> data(bcmort)

> bcmort

(b)
Display the dataset by:

> plot(bcmort)

(c)
Remove the gaps using the function pair():

> par(mex=1)

> pairs(bcmort, gap=0, cex.labels=2.0)

(The results are shown in Figures 4.28-1 and 4.28-2.)
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Figure 4.28-1 pairs plots of data.
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Figure 4.28-2 pairs plots of data, removing gaps between individual plots.
9.
Displaying more multivariate data.
A public health study investigating the effect of body weight on the resting metabolic rate (rmr) for women was published in Altman, D. G. (1991). Practical statistics for medical research (Exercise 11.2), Chapman & Hall. The rmr data frame has 44 rows and 2 columns, containing the rmr and body weight data for 44 women. The two columns are:

body.weight
A numeric vector, body weight (kg)

metabolic.rate
A numeric vector, metabolic rate (kcal/24 hr)

(a)
Examine the dataset, using the following R code segment:

> install.packages("ISwR")

> library("ISwR")

> data(rmr)

> rmr

(b)
Display the dataset by:

> plot(rmr)

(The result is shown in Figure 4.29-1.)
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Figure 4.29-1 pairs plots of data.
(c)
Execute the following plot:
> plot(metabolic.rate~body.weight,data=rmr)

(The result is shown in Figure 4.29-2.)
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Figure 4.29-2 Specific plot of dataset.
(c)
Notice any difference between this plot and the last plot? (Answer: No)
(d)
Add a linear regression line on the display using:

> abline(lm(metabolic.rate ~ body.weight, data = rmr))

(The result is shown in Figure 4.29-3.)
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Figure 4.29-3 Specific plot of dataset, with regression line.
10.
A step-by-step procedure to display a plot with labeling:

(a)
Get ready by using:
> plot.new()

(b)
Set up a window by using:
> plot.window(range(pressure$temperature),
+                   range(pressure$temperature))

(c)
Plot the pressure vs. temperature data by using:
> plot.xy(pressure, type="p")

> # Outputting: Figure 4.30-1
(d)
Put a rectangular frame over the display by using:
> box()

> # Outputting: Figure 4.30-2
(e)
Adding the horizontal (temperature) axis by using

> axis(1)

> # Outputting: Figure 4.30-3
(f)
Add the other axis, the vertical (pressure) axis, by using:
> axis(2)

> # Outputting: Figure 4.30-4
(g)
Finally, label the plot centered at the position (100 units horizontal, 250 units vertical) by using:
> text(100, 250, "Pressure (mm Hg)\nversus\nTemperature
+                                                                 (Centigrade)")

> # Outputting: Figure 4.30-5
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Figure 4.30-1 > plot.xy (pressure, type="p").
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Figure 4.30-2 Adding > box().
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Figure 4.30-3 Adding > axis(1).
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Figure 4.30-4 Adding > axis(2).
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Figure 4.30-5 Adding > text(100, 250, "Pressure (mm Hg)\nversus\nTemperature (Centigrade)").
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Learning Objectives

____________________________
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Exercises for Section 5.1

____________________________

1.
Using R as a calculator, compute the answers to the following:

(a)
7! (Factorial 7)

(b)
9C5
ANSWER:

(a)
In the R space:

>

> factorial(7)

[1] 5040

>

that is, Factorial 7 = 7! = 5,040.
(b)
Since mCn = m!/n!(m – n)!, 9C5  = 9!/5!(9 – 4)!

In the R space:

>

> factorial(9)/(factorial(5)*factorial(9 – 5))

[1] 126

>

Hence, 9C5 = 126.

2.
Using R as a calculator, compute the answers to the following:

(a)
Sampling, without replacement, 2 sets of 10 representative random numbers from a population of 2 million case subjects
ANSWER:

In each sampling process, the following 10 selections are made:

	___
	___
	___
	___
	___
	___
	___
	___
	___
	___

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10


For a population of 2 million, 2 × 106, without replacement:

Position 1 may be filled in 2 × 106  ways.

Position 2 may then be filled in (2 × 106  – 1) ways.

Position 3 may then be filled in (2 × 106  – 2) ways.

Position 4 may then be filled in (2 × 106  – 3) ways.

…………………………………………………………
Position 9 may then be filled in (2 × 106  – 8) ways.

Position 10 may then be filled in (2 × 106  – 9) ways.

Hence, the total number of combinations, N, is the product

N = (2 × 106) (2 × 106  –  1) (2 × 106  – 2) (2 × 106  – 3) … (2 × 106  – 9)

= Approximately (2 × 106)10
= 210 × 1060

= 1,024 × 1060

= Approximately 1,000 × 1060

= Approximately 1063

(b)
Out of a patient population of 30 people, the health worker is preparing groups of 5 each for further clinical testing. How many groups may be combined, without concern for the order of testing within each group?

ANSWER:

The total number of combinations (from a total population of m people, without considerations of permutations within each combination of n members), is mCn = m!/n!(m – n)!

For m = 30 and n = 5, the total number of such combinations may be calculated as:
30C5 = 30!/5! (30 – 5)!

In the R space:

>

> factorial(30)/(factorial(5)*factorial(30 – 5))

[1]  142506

>

that is, in forming subgroups of 5 people, from a population of 30 people, one may obtain 142,506 such subgroups!

3
(a)   With respect to the R function fivenum(), what is meant by the five-number summary in R?

ANSWER:

The R function fivenum(), called the Tukey five-number summaries (minimum, lower-hinge, median, upper-hinge, maximum), for a given set of input data takes the form:

Usage: fivenum(x, na.rm = TRUE)
With arguments:

x
Numeric, may include NAs and +/-Infs.

na.rm
Logical, if TRUE, all NA and NaNs are dropped, before the statistics are computed, and has

Value
A numeric vector of length 5 containing the summary information.
(b)
From the set of first 100 natural numbers: {1, 2, 3, …, i, …, 100}, use the R function summary() to obtain the summary statistics after obtaining the five-number summary for this set.

ANSWER:

In the R space:

>

> vector <- data.frame(x=1:100)

> vector

x

1     1

2     2

3     3

4     4

5     5

6     6

7     7

8     8

9     9

10   10

11   11

12   12

13   13

14   14

15   15

16   16

17   17

18   18

19   19

20   20

21   21

22   22

23   23

24   24

25   25

26   26

27   27

28   28

29   29

30   30

31   31

32   32

33   33

34   34

35   35

36   36

37   37

38   38

39   39

40   40

41   41

42   42

43   43

44   44

45   45

46   46

47   47

48   48

49   49

50   50

51   51

52   52

53   53

54   54

55   55

56   56

57   57

58   58

59   59

60   60

61   61

62   62

63   63

64   64

65   65

66   66

67   67

68   68

69   69

70   70

71   71

72   72

73   73

74   74

75   75

76   76

77   77

78   78

79   79

80   80

81   81

82   82

83   83

84   84

85   85

86   86

87   87

88   88

89   89

90   90

91   91

92   92

93   93

94   94

95   95

96   96

97   97

98   98

99   99

100 100

>

> summary(vector)

x

Min.   :  1.00

1st Qu.: 25.75

Median : 50.50

Mean   : 50.50

3rd Qu.: 75.25

Max.   :100.00

>

> fivenum(vector)

[1]   1.0  25.5  50.5  75.5 100.0

>

4.
(a) What is meant by the Q–Q plot of a set of numbers?
ANSWER:

A Q–Q plot, or quantile–quantile plot, plots the ranked p-values against their expected order statistics on a minus log base 10 scale. In the R space, the form for specifying this plot is:

R Documentation
Usage: QQ.plot(pvals, op=NULL)
Arguments:
pvals is a vector of p-values. No default.

op is a list of options, the default is NULL.

It plots the ranked p-values against their expected order statistics on a minus log base 10 scale. Options list op: Below are the names for the options list op. All names have default values if they are not specified.

title
Character string for the title of the plot. The default is "QQ PLOT"

color
The color of the plot. The default is "blue"

(b)
Using the R function qqnorm(), obtain the Q–Q plot for a set of 1,000 normally distributed, randomly generated numbers.

ANSWER:

In the R space:
> # To obtain 1,000 normally distributed, randomly generated numbers
> x <- rnorm(1000)

>

> x   # Inspecting x

  [1]  0.1094130397  1.0450541488  0.1904592510 -0.0267341482 -0.1263656346

  [6] -0.3619850779 -0.8852176162 -0.3308374072  0.9694639280  0.3689390128

[11]  0.4690308580 -1.0697245730 -0.1882586048  0.9456042954 -1.0537252679

……………………………………………………………………………………………………
……………………………………………………………………………………………………
[986]  0.9278363896  0.4957409922  1.1136795835 -1.0853255686 -0.7254561249

[991] -0.4137179276  0.5328608554 -0.0034303762 -1.0280176819  0.7293303860

[996]  0.6366323555 -0.2545990543 -2.8386758832  0.8040267138  0.5234919610

> qqnorm(x)

> # Outputting:
> # Figure S5.1 Q–Q Plot of a set of 1,000 normally distributed, randomly generated 
> # numbers.
>
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Figure S5.1 Q–Q Plot of 1,000 normally distributed, randomly generated numbers.

5.
A one-sample t-test.
The daily calories intake of 11 case subjects, in kilojoules (kJ), are 5261, 5674, 5968, 6275, 6345, 6587, 6909, 7021, 7183, 8251, 8650.
(a)
Compute some summary biostatistics for this dataset.

(b)
The recommended daily energy intake is 7725 kJ, assuming that the dataset is part of a normal distribution, calculate the mean (μ) of this dataset and compare it with the recommended daily value.

ANSWERS to (a) and (b):

In the R space:

>

> # The collected data of daily calories intake is entered into a data vector, called 
> # DailyCaloriesIntake:
>

> DailyCaloriesIntake <- c(5261, 5674, 5968, 6275, 6345,

>                                        6587, 6909, 7021, 7183, 8251, 8650)

> # This file is being output for checking:
> DailyCaloriesIntake

[1] 5261 5674 5968 6275 6345 6587 6909 7021 7183 8251

    8650

>

> # The mean and standard deviation are calculated:
> mean(DailyCaloriesIntake)

[1] 6738.545

> sd(DailyCaloriesIntake)

[1] 1027.152

>

> # The quantile values are calculated:
> quantile(DailyCaloriesIntake)

0%        25%      50%      75%     100%

5261.0  6121.5  6587.0  7102.0  8650.0

>

> # Assuming that the dataset is part of a normal distribution, the mean (μ) of this dataset 
> # is calculated and compared with the recommended daily value 7725 kJ.
>

> t.test(DailyCaloriesIntake, mu=7725)

> # Outputting:
One Sample t-test

data:  DailyCaloriesIntake

t = -3.1852, df = 10, p-value = 0.009733

alternative hypothesis: true mean is not equal to 7725

95 percent confidence interval:

6048.495 7428.595

sample estimates:

mean of x

6738.545

>

> # Next, the five-number summary of the dataset is computed:
> fivenum(DailyCaloriesIntake)

[1]  5261.0  6121.5  6587.0  7102.0  8650.0

> summary(DailyCaloriesIntake)

Min.   1st Qu.  Median   Mean 3rd Qu.    Max.

5261   6122     6587        6739    7102        8650

>

> # Finally, a histogram of the dataset is being constructed:
> hist(DailyCaloriesIntake, freq=F)

> # Outputting Figure S5.2
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Figure S5.2 A histogram of the dataset DailyCaloriesIntake.
6.
A one-sample Wilcoxon signed-rank test.
(a)
For the dataset in Exercise 5, use R to compute a one-sample Wilcoxon signed-rank test.

(b)
Compare the results with those using the one-sample t-test. Comment on these two results.

7.
An exercise in the calculation of significance tests.
(This exercise is based on a discussion by Dalgaard [4, p. 96ff.].)

In the package ISwR is a data frame thuesen consisting of measurements of blood.glucose vs. short.velocity for 24 case subjects. The following R code-segment is used to obtain a linear model object lm to represent these two variables, followed by an analysis of the significance level of the model correlation.

The complete R computation procedure is as follows:

> install.packages("ISwR")

> library(ISwR)

Attaching package: ‘ISwR’

The following object(s) are masked from “package:survival”: lung
> ls("package:ISwR")

[1]
"alkfos"
"ashina"
"bcmort"
"bp.obese"

[5]
"caesar.shoe"
"coking"
"cystfibr"
"eba1977"

[9]
"energy"
"ewrates"
"fake.trypsin"
"graft.vs.host"

[13]
"heart.rate"
"hellung"
"IgM"
"intake"

[17]
"juul"
"juul2"
"kfm"
"lung"

[21]
"malaria"
"melanom"
"nickel"
"nickel.expand"

[25]
"philion"
"react"
"red.cell.folate"
"rmr"

[29]
"secher"
"secretin"
"stroke"
"tb.dilute"

[33]
"thuesen"
"tlc"
"vitcap"
"vitcap2"

[37]
"wright"
"zelazo"

> data(thuesen)

> attach(thuesen)

> thuesen


blood.glucose
short.velocity

1
15.3
1.76

2
10.8
1.34

3
8.1
1.27

4
19.5
1.47

5
7.2
1.27

6
5.3
1.49

7
9.3
1.31

8
11.1
1.09

9
7.5
1.18

10
12.2
1.22

11
6.7
1.25

12
5.2
1.19

13
19.0
1.95

14
15.1
1.28

15
6.7
1.52

16
8.6
NA

17
4.2
1.12

18
10.3
1.37

19
12.5
1.19

20
16.1
1.05

21
13.3
1.32

22
4.9
1.03

23
8.8
1.12

24
9.5
1.70

> lm(short.velocity ~ blood.glucose)

Call:

lm(formula = short.velocity ~ blood.glucose)

Coefficients:

(Intercept)  blood.glucose

1.09781        0.02196

> summary(lm(short.velocity ~ blood.glucose))

Call:

lm(formula = short.velocity ~ blood.glucose)

Residuals:

       Min              1Q      Median            3Q            Max

-0.40141    -0.14760    -0.02202     0.03001     0.43490

Coefficients:

                       Estimate Std.         Error    t value         Pr(>|t|)

(Intercept)             1.09781    0.11748      9.345   6.26e-09 ***

blood.glucose      0.02196     0.01045     2.101   0.0479 *

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2167 on 21 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.1737,     Adjusted R-squared: 0.1343

F-statistic: 4.414 on 1 and 21 DF,  p-value: 0.0479

>

> plot(blood.glucose, short.velocity)
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Figure 5.11 Scatter plot of data.
>

> abline(lm(short.velocity ~ blood.glucose))

>
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Figure 5.12 Scatter plot of data with regression line.
With respect to the foregoing exercise in R computations,

(a)
The tilde symbol (~) in the command

> lm(short.velocity ~ blood.glucose)

may be read as “described by”. This command correlates the two variables short.velocity and blood.glucose. In this correlation, which components is

(i)
the dependent variable?

(ii)
the independent variable?

(b)
Next, the basic extractor function summary() provides the information regarding the correlation.  For a satisfactory correlation:

(i)
The average of the residuals is, by definition, zero. What is the median of the residuals?

(ii)
The maximum and minimum should be approximately equal in absolute value. What are the absolute values of the outputted maximum and minimum?

(c)
Next, the regression coefficient and the intercept are shown, accompanied by standard errors, t-tests, and p-values. The symbols to the right of the table are graphical indicators of the significance level. The line below the table indicates the definition of these indicators:

*One star implies 0.01 < p < 0.05

What is the computed p-value in this test? How many stars are there?

(d)
Repeat the computation, interchanging the dependent variable with the independent variable, that is, starting with

> lm(blood.glucose ~ short.velocity)

Compare the second set of results with the first. Comment on the contrasts.

8.
An exercise in the calculation of confidence intervals (CIs).
In the CRAN package stats is the R function confint(), which may be used for computing CIs for one or more parameters in a fitted model. There is a default and a method for objects inheriting from class "lm". The usage form for confint() is:
confint(object, parm, level = 0.95, ...)

for which the arguments are:

object
A fitted model object.

parm
A specification of which parameters are to be given CIs, either a vector of numbers or a vector of names. If missing, all parameters are considered.

level
The confidence level required.

...
Additional argument(s) for methods.

confint() is a generic function. The default method assumes asymptotic normality. The default method can be called directly for comparison with other methods. For objects of class "lm" the direct formulae based on t values are used.

(a)
Now, compute the CI for the model object in Exercise 7 by the following R code segments, for 95% CI:

> m <- lm(short.velocity ~ blood.glucose)

> confint(m)

                              2.5 %                     97.5 %

(Intercept)           0.8534993816       1.34213037

blood.glucose     0.0002231077       0.04370194

(b)
To go for 99% CI, use

> confint(m, level=0.99)

                                 0.5 %                  99.5 %

(Intercept)               0.765183405      1.43044635

blood.glucose       -0.007635328      0.05156037

>

9.
An exercise in the calculation of goodness-of-fit (GoF).
In the CRAN package pgirmess is the function ks.gof(), the Kolmogorov–Smirnov (KS) GoF test for normal distributions. The usage form for ks.gof() is:

ks.gof(var)

for which the argument is var, a numeric vector.

The following R code segment illustrates a simple GoF computation:

> install.packages("pgirmess")

> library(pgirmess)

> ls("package:pgirmess")

[1]
"CI"
"classnum"
"cormat"

[4]
"correlog"
"date2winter"
"diag2edge"

[7]
"difshannonbio"
"dirProj"
"dirSeg"

[10]
"distNNeigh"
"distNode"
"distSeg"

[13]
"distTot"
"expandpoly"
"friedmanmc"

[16]
"gps2gpx"
"kruskalmc"
"kruskalmc.default"

[19]
"kruskalmc.formula"
"ks.gof"
"pairsrp"

[22]
"pave"
"pclig"
"permcont"

[25]
"PermTest"
"PermTest.glm"
"PermTest.lm"

[28]
"PermTest.lme"
"piankabio"
"piankabioboot"

[31]
"plot.correlog"
"polycirc"
"polycirc2"

[34]
"postxt"
"print.clnum"
"print.correlog"

[37]
"print.mc"
"print.PermTest"
"readGDALbbox"

[40]
"readVista"
"rmls"
"rwhatbufCat"

[43]
"rwhatbufCat2"
"rwhatbufNum"
"rwhatpoly"

[46]
"Segments"
"selMod"
"selMod.list"

[49]
"selMod.lm"
"shannon"
"shannonbio"

[52]
"shannonbioboot"
"tabcont2categ"
"thintrack"

[55]
"trans2pix"
"trans2seg"
"TukeyHSDs"

[58]
"uploadGPS"
"val4symb"
"valchisq"

[61]
"write.delim"
"writeGPX"
"writePRJ"

> # Let’s try this on some normally distributed datasets:
> x<-rnorm(50) # Take a set of 50 randomly generated numbers
> x

[1]
1.15482519
-0.05652142
-2.12936065
0.34484576
-1.90495545
-0.81117015

[7]
1.32400432
0.61563685
1.09166896
0.30660486
-0.11015876
-0.92431277

[13]
1.59291375
0.04501060
-0.71512840
0.86522310
1.07444096
1.89565477

[19]
-0.60299730
-0.39086782
-0.41622203
-0.37565742
-0.36663095
-0.29567745
[25]
1.44182041
-0.69753829
-0.38816751
0.65253645
1.12477245
-0.77211080

[31]
-0.50808622
0.52362059
1.01775423
-0.25116459
-1.42999345
1.70912103

[37]
1.43506957
-0.71037115
-0.06506757
-1.75946874
0.56972297
1.61234680

[43]
-1.63728065
-0.77956851
-0.64117693
-0.68113139
-2.03328560
0.50096356

[49]
-1.53179814
-0.02499764
> ks.gof(x) # Outputting:
One-sample Kolmogorov-Smirnov test data: var

D = 0.0811, p-value = 0.8707

alternative hypothesis: two-sided

> ks.gof(blood.glucose) # Using the dataset from Exercise 8, outputting:
One-sample Kolmogorov-Smirnov test

data:  var

D = 0.1148, p-value = 0.9097

alternative hypothesis: two-sided

Warning message:

In ks.test(var, "pnorm", mean(var), sd(var)) :

ties should not be present for the Kolmogorov-Smirnov test

> x1 <- rnorm(10000) # Taking on a larger set of rnorm numbers:
> ks.gof(x1) # Outputting:
One-sample Kolmogorov-Smirnov test data:  var

D = 0.007, p-value = 0.718

alternative hypothesis: two-sided

> x2 <- rnorm(1000000) # For a still larger set of rnorm numbers:
> ks.gof(x2)

One-sample Kolmogorov-Smirnov test data:  var

D = 5e-04, p-value = 0.979

alternative hypothesis: two-sided

(a)
What are the p-values obtained by this GoF test for a randomly generated and normally distributed set of 50, 100,000, and 1,000,000?

(b)
Collect other sets of data, and use this simple procedure to test for normality.

(c)
Increase the size of the datasets, then repeat this test. How do the p-values vary progressively as the size of the datasets increase? Comment on the results.

10.
gof: GoF statistical software in R
A number of statistical software packages for computations in GoF analysis are available in the open-sourced R environment, available from the Comprehensive R Archive Network (CRAN) website (http://cran.r-project.org/).
A typical contribution is:

cumres:
Calculating the cumulative residuals for generalized linear models within the package gof, which is developed as a GoF statistical software in R.
This software computes GoF measures for linear regression models lm(), including logistic and Poisson regression models, as well as generalized linear models glm(). These are illustrated as follows:

(i)
the usage form of the class “lm” is cumres(model, …)
(ii)
the usage form of the class “glm” is: cumres (model,…)
variable=c("predicted",colnames(model.matrix(model))),

                data=data.frame(model.matrix(model)),

                R=500, b=0, plots=min(R,50),

                seed=round(runif(1,1,1e9)),...)

in which the arguments are:

model
Model object (lm or glm)
variable
List of variables to order the residuals after
data
Data frame used to fit model (complete cases)

R
Number of samples used in simulation

b
Moving average bandwidth (0 corresponds to infinity = standard cumulated residuals)

plots
Number of realizations to save for use in the plot routine

seed
Random seed

...
Additional arguments

The computation returns as object of class “cumres”.

A sample computation is shown in the following R code segment to illustrate the use of this GoF software, cumres(), to simulate a simple function:

f(x1, x2) = 10x1 + x22,

where both x1 and x2 are randomly generated, normally distributed independent variables:

> install.packages("gof")

> library(gof)

Loading 'gof' package...

Version : 0.8-1

> ls("package:gof")

[1] "cumres"

> sim1 <- function(n=100, f=function(x1,x2) {10+x1+x2^2},

+ sd=1, seed=1) {

+ if (!is.null(seed))

+ set.seed(seed)

+ x1 <- rnorm(n);

+ x2 <- rnorm(n)

+ X <- cbind(1,x1,x2)

+ y <- f(x1,x2) + rnorm(n,sd=sd)

+ d <- data.frame(y,x1,x2)

+ return(d)

+ }

> d <- sim1(100); l <- lm(y ~ x1 + x2,d)

> system.time(g <- cumres(l, R=100, plots=50))

user system elapsed

0.21    0.00    0.21

> g #  Outputting:
Kolmogorov-Smirnov-test: p-value=0.32

Cramer von Mises-test: p-value=0.36

Based on 100 realizations. Cumulated residuals ordered by predicted-variable.

---

Kolmogorov-Smirnov-test: p-value=0.51

Cramer von Mises-test: p-value=0.26

Based on 100 realizations. Cumulated residuals ordered by x1-variable.

---

Kolmogorov-Smirnov-test: p-value=0

Cramer von Mises-test: p-value=0

Based on 100 realizations. Cumulated residuals ordered by x2 variable.

---

> plot(g) # Outputting: Figure 5.13-1.
> g1 <- cumres(l, c("y"), R=100, plots=50)

> g1 # Outputting:
Kolmogorov-Smirnov-test: p-value=0.26

Cramer von Mises-test: p-value=0.32

Based on 100 realizations. Cumulated residuals ordered by predicted-variable.

---

> plot(g1) # Outputting: Figure 5.13-2.
> g2 <- cumres(l, c("y"), R=100, plots=50, b=0.5)

> g2 # Outputting:
Kolmogorov-Smirnov-test: p-value=0.39

Cramer von Mises-test: p-value=0.21

Based on 100 realizations. Cumulated residuals ordered by predicted-variable.

---

> plot(g2) # Outputting: Figure 5.13-3.
>
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Figure 5.13-1 Plot of g.
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Figure 5.13-2 Plot of g1.
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Figure 5.13-3 Plot of g2.
(a)
Consider the three plots for g, g1, and g2, respectively, shown in Figures 5.13-1, 5.13-2, and 5.13-3. What are the corresponding KS test p-values for these correlations?

ANSWER: 0, 0.26, 0.39

(b)
Inspecting these three plots, as the p-values increase, describe the graphical shapes of the corresponding correlation regressions.

ANSWER: As p increases, the graphical shapes become more complex.
(c)
Of the three attempts to correlate, which provides the “best” correlation and the “worst” correlation? Why?

ANSWER: The third model, g2 (p = 0.39), provides the most detailed correlation.
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Case–Control Studies and Cohort Studies in Epidemiology
Learning Objectives

____________________________
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To understand the concepts of case–control studies and cohort studies in epidemiology
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To understand and apply the theory and analysis of case–control studies in epidemiology and public health using R
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To understand and apply the theory and analysis of cohort studies in epidemiology and public health using R
Exercises for Section 6.1

____________________________

1.
In Example 6.1, what are the functions of the following R code segment used in analyzing the dataset BCG:

> boxplot(BCG$BCGTB/BCG$BCGVacc, # 2 boxplots on BCG

+               BCG$NoVaccTB/BCG$NoVacc,

+               names = c("BCG Vaccination", "No BCG Vaccination"),

+               ylab = "Percent BCG cases")

ANSWER:

This R command creates a comparative boxplot for the two cases under investigation, calculating the percentage Bacillus Calmette-Guerin (BCG) cases for

(i)
Cases in which there were BCG vaccination

(ii)
Cases in which there were no BCG vaccination

The plots show that it is reasonable to conclude that populations receiving the BCG vaccination will be less likely to contract tuberculosis (TB).

2.
In place of the function boxplot() used in the analysis, what are some other R functions that could produce similar results?
ANSWER:

Besides using boxplots to analyze the data, other R functions that may produce similar results are:


[image: image64]
Mosaic plots
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The CRAN package survival,
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Cox regression model
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Survival analysis

3.
If the two boxplots in Figure 6.1 were to be plotted separately, what R code segments would you use? Demonstrate the results.

ANSWER:

>

> install.packages("HSAUR")

--- Please select a CRAN mirror for use in this session ---

(Selected CA2)

trying URL

'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/HSAUR_1.3-0.zip'

Content type 'application/zip' length 2198932 bytes (2.1 Mb)

opened URL
downloaded 2.1 Mb

package ‘HSAUR’ successfully unpacked and MD5 sums checked

Warning: cannot remove prior installation of package ‘HSAUR’

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)

trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/HSAUR_1.3-0.zip'

Content type 'application/zip' length 2198932 bytes (2.1 Mb)

opened URL

downloaded 2.1 Mb

package ‘HSAUR’ successfully unpacked and MD5 sums checked

The downloaded packages are in

C:\Users\bertchan\AppData\Local\Temp\RtmpQxW5LV\downloaded_packages

> library(HSAUR)

Loading required package: lattice

Loading required package: MASS

Loading required package: scatterplot3d

Warning messages:

1: package ‘HSAUR’ was built under R version 2.14.2

2: package ‘lattice’ was built under R version 2.14.2

> ls("package:HSAUR")

[1]
"agefat"
"aspirin"
"BCG"
"birthdeathrates"

[5]
"bladdercancer"
"BtheB"
"clouds"
"CYGOB1"

[9]
"epilepsy"
"Forbes2000"
"foster"
"gardenflowers"

[13]
"GHQ"
"heptathlon"
"HSAURtable"
"Lanza"

[17]
"mastectomy"
"meteo"
"orallesions"
"phosphate"

[21]
"pistonrings"
"planets"
"plasma"
"polyps"

[25]
"polyps3"
"pottery"
"rearrests"
"respiratory"

[29]
"roomwidth"
"schizophrenia"
"schizophrenia2"
"schooldays"

[33]
"skulls"
"smoking"
"students"
"suicides"

[37]
"toothpaste"
"voting"
"water"
"watervoles"

[41]
"waves"
"weightgain"
"womensrole"

> data(BCG)

> BCG


Study
BCGTB
BCGVacc
NoVaccTB
NoVacc
Latitude
Year

1
1
4
123
11
139
44
1948

2
2
6
306
29
303
55
1949

3
3
3
231
11
220
42
1960

4
4
62
13598
248
12867
52
1977

5
5
33
5069
47
5808
13
1973

6
6
180
1541
372
1451
44
1953

7
7
8
2545
10
629
19
1973

8
8
505
88391
499
88391
13
1980

9
9
29
7499
45
7277
27
1968

10
10
17
1716
65
1665
42
1961

11
11
186
50634
141
27338
18
1974

12
12
5
2498
3
2341
33
1969

13
13
27
16913
29
17854
33
1976

> attach(BCG)

>

> boxplot(BCG$BCGTB/BCG$BCGVacc, xlab="BCG Vaccination",

+               ylab="Percent BCG cases")

> # Outputting: Figure S6.1.1
>
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Figure S6.1.1 Boxplot for case–control study on the efficacy of BCG vaccination in preventing TB.
>

> boxplot(BCG$NoVaccTB/BCG$NoVacc, xlab="No BCG

+               Vaccination", ylab="Percent BCG cases")

> # Outputting: Figure S6.1.2
>
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Figure S6.1.2 Boxplot for case–control study on the efficacy of no BCG vaccination in preventing TB.
4.
In Example 6.2 (“A Case-Control Study to assess the effectiveness of a clinical  respiratory treatment and to estimate its effects”), what are the functions of the following R code segment used in analyzing the dataset respiratory:

> mosaicplot(xtabs( ~ treatment + month + status, data =

+                              respiratory))

ANSWER:

This R code segment considers the efficacy of the treatment, comparing it with the placebo effects, in terms of the observed relatively good and poor results derived from the treatment, over a period of time during which the treatment was applied.

From the R website**, the following description of the graphical function mosaicplot() is available:

mosaicplot {graphics}

R Documentation
Mosaic Plots

Description:
Plots a mosaic on the current graphics device.

Usage:
mosaicplot(x, ...)

## Default S3 method:

mosaicplot(x, main = deparse(substitute(x)),

 sub = NULL, xlab = NULL, ylab = NULL,

 sort = NULL, off = NULL, dir = NULL,

color = NULL, shade = FALSE, margin = NULL,

 cex.axis = 0.66, las = par("las"), border = NULL,

type = c("pearson", "deviance", "FT"), ...)

## S3 method for class 'formula'

mosaicplot(formula, data = NULL, ...,

main = deparse(substitute(data)), subset,

na.action = stats::na.omit)

Arguments:
x
A contingency table in array form, with optional category labels specified in the dimnames(x) attribute. The table is best created by the table() command.

main
Character string for the mosaic title.
sub
Character string for the mosaic subtitle (at bottom).

xlab,ylab
x- and y-axis labels used for the plot; by default, the first and second element of names(dimnames(X)) (i.e., the name of the first and second variable in X).

sort
Vector ordering of the variables containing a permutation of the integers 1:length(dim(x)) (the default).
off
Vector of offsets to determine percentage spacing at each level of the mosaic (appropriate values are between 0 and 20), and the default is 20 times the number of splits for two-dimensional tables and 10 otherwise. Rescaled to maximally 50, and recycled if necessary.

dir
Vector of split directions ("v" for vertical and "h" for horizontal) for each level of the mosaic, one direction for each dimension of the contingency table. The default consists of alternating directions, beginning with a vertical split.
color
Logical or (recycling) vector of colors for color shading, used only when shade is FALSE, or NULL (default). By default, gray boxes are drawn. color=TRUE uses a gamma-corrected gray palette. color=FALSE gives empty boxes with no shading.
shade
A logical vector indicating whether to produce extended mosaic plots, or a numeric vector of at most five distinct positive numbers giving the absolute values of the cut points for the residuals. By default, shade is FALSE, and simple mosaics are created. Using shade = TRUE cuts absolute values at 2 and 4.
margin
A list of vectors with the marginal totals to be fit in the log-linear model. By default, an independence model is fitted. See loglin for further information.
cex.axis
The magnification to be used for axis annotation, as a multiple of par("cex").
las
Numeric; the style of axis labels, see par.
border
Color of borders of cells: see polygon.
type
A character string indicating the type of residual to be represented. Must be one of "pearson" (giving components of Pearson’s chi-squared), "deviance" (giving components of the likelihood ratio chi-squared), or "FT" for the Freeman-Tukey residuals. The value of this argument can be abbreviated.
formula
A formula such as y ~ x.
data
A data frame (or list) or a contingency table from which the variables in formula should be taken.
...
Further arguments to be passed to or from methods.
subset
An optional vector specifying a subset of observations in the data frame to be used for plotting.
na.action
A function that indicates what should happen when the data contains variables to be cross-tabulated, and these variables contain NAs. The default is to omit cases that have an NA in any variable. As the tabulation will omit all cases containing missing values, this will only be useful if the na.action function replaces missing values.
Details:
This is a generic function. It currently has a default method (mosaicplot.default) and a formula interface (mosaicplot.formula).

Extended mosaic displays visualize standardized residuals of a log-linear model for the table by color and outline of the mosaic’s tiles. (Standardized residuals are often referred to as standard normal distribution.) Cells representing negative residuals are drawn in red with broken borders; positive ones are drawn in blue with solid borders.

For the formula method, if data is an object inheriting from class "table" or class "ftable" or an array with more than two dimensions, it is taken as a contingency table, and hence all entries should be non-negative. In this case, the left-hand side of the formula should be empty and the variables on the right-hand side should be taken from the names of the dimnames attribute of the contingency table. A marginal table of these variables is computed and a mosaic plot of that table is produced.

Otherwise, data should be a data frame or matrix, list or environment containing the variables to be cross-tabulated. In this case, after possibly selecting a subset of the data as specified by the subset argument, a contingency table is computed from the variables given in formula, and a mosaic is produced from this.

See Emerson (1998) for more information and a case study with television viewer data from Nielsen Media Research.

Missing values are not supported except via an na.action function when data contains variables to be cross-tabulated.

A more flexible and extensible implementation of mosaic plots written in the grid graphics system is provided in the function mosaic in the contributed package vcd (Meyer, Zeileis, & Hornik, 2005).

Author(s):
S-PLUS original by John Emerson (john.emerson@yale.edu). Originally modified and enhanced for R by Kurt Hornik.

References:
Hartigan, J. A., & Kleiner, B. (1984). A mosaic of television ratings. The American Statistician, 38, 32–35.

Emerson, J. W. (1998). Mosaic displays in S-PLUS: A general implementation and a case study. Statistical Computing and Graphics Newsletter (ASA), 9(1), 17–23.

Friendly, M. (1994) Mosaic displays for multi-way contingency tables. Journal of the American Statistical Association, 89, 190–200.

Meyer, D., Zeileis, A., & Hornik, K. (2005). The strucplot framework: Visualizing multi-way contingency tables with vcd. Report 22, Department of Statistics and Mathematics, Wirtschaftsuniversität Wien, Research Report Series. Retrieved from http://epub.wu.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1
The home page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.html) provides information on various aspects of graphical methods for analyzing categorical data, including mosaic plots.

See also assocplot, loglin.
Examples:
require(stats)

mosaicplot(Titanic, main = "Survival on the Titanic", color = TRUE)

## Formula interface for tabulated data:

mosaicplot(~ Sex + Age + Survived, data = Titanic, color = TRUE)

mosaicplot(HairEyeColor, shade = TRUE)

## Independence model of hair and eye color and sex. Indicates that there are 
## more blue-eyed blonde females than expected in the case of independence 
## and too few brown-eyed blonde females. The corresponding model is:
fm <- loglin(HairEyeColor, list(1, 2, 3))

 pchisq(fm$pearson, fm$df, lower.tail = FALSE)

mosaicplot(HairEyeColor, shade = TRUE, margin = list(1:2, 3))

## Model of joint independence of sex from hair and eye color. Males are 
## underrepresented among people with brown hair and eyes, and are 
## overrepresented among people with brown hair and blue eyes. The 
## corresponding model is:
fm <- loglin(HairEyeColor, list(1:2, 3))

 pchisq(fm$pearson, fm$df, lower.tail = FALSE)

## Formula interface for raw data: visualize cross-tabulation of numbers of gears 
## and carburetors in Motor Trend car data.
mosaicplot(~ gear + carb, data = mtcars, color = TRUE,
 las = 1)

# color recycling

mosaicplot(~ gear + carb, data = mtcars, color = 2:3, las = 1)

5.
In place of the function mosaicplot() used in the analysis, what are some other R functions that may produce similar results?

ANSWER:

For cohort case–control epidemiologic studies, other R functions that may produce results, similar to the function mosaicplot() analysis, include the following:

boxplot(), coxphf(), coxr(), survfit(), survrec(), etc.

6.
If the two mosaic plots in Figure 6.2 were to be plotted separately, what R code segments may be used? Demonstrate the results.

ANSWER:

> mosaicplot(xtabs(~ + month + status, data = respiratory))

> # Outputting: Figure S6.2.1
>

[image: image70.jpg]xtabs(~+month + status, data = respiratory)
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Figure S6.2.1 Mosaicplot for case–control study on the efficacy of clinical treatment on respiratory status for placebo data.
> mosaicplot(xtabs(~treatment+ month + status, data =

+ respiratory))

> # Outputting: Figure S6.2.2
[image: image71.jpg]xtabs(~treatment + month + status, data = respiratory)
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Figure S6.2.2 Mosaicplot for case–control study on the efficacy of clinical treatment on respiratory status for placebo and treatment data.
7.
In the CRAN package coxphf (Cox regression with Firth’s penalized likelihood), the data file breast contains the breast cancer dataset used by Heinze and Schemper (2001). This dataset contains information on 100 breast cancer patients, including survival time, survival status, tumor stage, nodal status, grading, and cathepsin-D tumor expression. Describe what does the following R code segment achieve for this dataset:

> data(breast)

> fit.breast <-

+               coxphf(data=breast,Surv(TIME,CENS)~T+N+G+CD)

> summary(fit.breast)

ANSWER:

This R code segment:

(i)
Calls in the dataset that contains information on 100 breast cancer patients, including survival time, survival status, tumor stage, nodal status, grading, and cathepsin-D tumor expression.

(ii)
Applies the program coxphf on the dataset.

(iii)
Outputs a useful summary of the computed results.

8.
Execute the R code segment in Exercise 7. Comment on the results.

>

>  data(breast)

> fit.breast <-

+               coxphf(data=breast,Surv(TIME,CENS)~T+N+G+CD)

> summary(fit.breast) # Outputting:
+ coxphf(formula = Surv(TIME, CENS) ~ T + N + G + CD,

+              data = breast)

Model fitted by Penalized ML

Confidence intervals and p-values by Profile Likelihood

coef
se(coef)
exp(coef)
lower 0.95
upper 0.95
Chisq
p

T
1.2244388
0.4916044
3.402256
1.3627461
9.472184
6.983773
0.008225204

N
0.9188882
0.4225734
2.506502
1.1204552
5.832863
5.004409
0.025282830

G
2.4244141
1.4735463
11.295610
1.4656675
1451.945971
6.090654
0.013589876

CD
0.3971181
0.4418554
1.487532
0.6268672
3.511784
0.822321
0.364502440

Likelihood ratio test=35.95142 on  4 df,  p=2.961054e-07,  n=100

Wald test = 23.20007 on 4 df, p = 0.0001154891

Covariance-Matrix:


T
N
G
CD

T
0.2416749123
-0.0007912296
-0.06806804
-0.07374037

N
-0.0007912296
0.1785682393
-0.04416386
-0.05117879

G
-0.0680680442
-0.0441638587
2.17133880
-0.02606955

CD
-0.0737403676
-0.0511787940
-0.02606955
0.19523619

>

9.
In the CRAN package survival, the data file bladder contains a clinical dataset. This dataset contains information on 340 case subjects.

(a)
Download this dataset.

(b)
Describe what does the following R code segment achieve for this dataset:

>

> # Fit a stratified model, clustered on patients
> bladder1 <- bladder[bladder$enum < 5, ]

> coxph(Surv(stop, event) ~ (rx + size + number) *

+              strata(enum) + cluster(id), bladder1)

>

ANSWER:

(a)
Downloading the dataset bladder in the CRAN package survival:

>

> install.packages("survival")

> library(survival)

> ls("package:survival")

[1]
"aareg"
"aml"
"attrassign"

[4]
"basehaz"
"bladder"
"bladder1"

[7]
"bladder2"
"cancer"
"cch"

[10]
"cgd"
"clogit"
"cluster"

[13]
"colon"
"cox.zph"
"coxph"

[16]
"coxph.control"
"coxph.detail"
"coxph.fit"

[19]
"dsurvreg"
"format.Surv"
"frailty"

[22]
"frailty.gamma"
"frailty.gaussian"
"frailty.t"

[25]
"heart"
"is.na.coxph.penalty"
"is.na.ratetable"

[28]
"is.na.Surv"
"is.ratetable"
"is.Surv"

[31]
"jasa"
"jasa1"
"kidney"

[34]
"labels.survreg"
"leukemia"
"logan"

[37]
"lung"
"match.ratetable"
"mgus"

[40]
"mgus1"
"mgus2"
"nwtco"

[43]
"ovarian"
"pbc"
"pbcseq"

[46]
"pspline"
"psurvreg"
"pyears"

[49]
"qsurvreg"
"ratetable"
"ratetableDate"

[52]
"rats"
"ridge"
"stanford2"

[55]
"strata"
"Surv"
"survConcordance"

[58]
"survdiff"
"survexp"
"survexp.mn"

[61]
"survexp.us"
"survexp.usr"
"survfit"

[64]
"survfitcoxph.fit"
"survobrien"
"survreg"

[67]
"survreg.control"
"survreg.distributions"
"survreg.fit"

[70]
"survregDtest"
"survSplit"
"tcut"

[73]
"tobin"
"tt"
"untangle.specials"

[76]
"veteran"

> data(bladder)

> bladder


id
rx
number
size
stop
event
enum

1
1
1
1
3
1
0
1

2
1
1
1
3
1
0
2

3
1
1
1
3
1
0
3

4
1
1
1
3
1
0
4

5
2
1
2
1
4
0
1

6
2
1
2
1
4
0
2

7
2
1
2
1
4
0
3

8
2
1
2
1
4
0
4

9
3
1
1
1
7
0
1

10
3
1
1
1
7
0
2

11
3
1
1
1
7
0
3

12
3
1
1
1
7
0
4

13
4
1
5
1
10
0
1

14
4
1
5
1
10
0
2

15
4
1
5
1
10
0
3

16
4
1
5
1
10
0
4

17
5
1
4
1
6
1
1

18
5
1
4
1
10
0
2

19
5
1
4
1
10
0
3

20
5
1
4
1
10
0
4

21
6
1
1
1
14
0
1

22
6
1
1
1
14
0
2

23
6
1
1
1
14
0
3

24
6
1
1
1
14
0
4

25
7
1
1
1
18
0
1

26
7
1
1
1
18
0
2

27
7
1
1
1
18
0
3

28
7
1
1
1
18
0
4

29
8
1
1
3
5
1
1

30
8
1
1
3
18
0
2

31
8
1
1
3
18
0
3

32
8
1
1
3
18
0
4

33
9
1
1
1
12
1
1

34
9
1
1
1
16
1
2

35
9
1
1
1
18
0
3

36
9
1
1
1
18
0
4

37
10
1
3
3
23
0
1

38
10
1
3
3
23
0
2

39
10
1
3
3
23
0
3

40
10
1
3
3
23
0
4

41
11
1
1
3
10
1
1

42
11
1
1
3
15
1
2

43
11
1
1
3
23
0
3

44
11
1
1
3
23
0
4

45
12
1
1
1
3
1
1

46
12
1
1
1
16
1
2

47
12
1
1
1
23
1
3

48
12
1
1
1
23
0
4

49
13
1
3
1
3
1
1

50
13
1
3
1
9
1
2

51
13
1
3
1
21
1
3

52
13
1
3
1
23
0
4

53
14
1
2
3
7
1
1

54
14
1
2
3
10
1
2

55
14
1
2
3
16
1
3

56
14
1
2
3
24
1
4

57
15
1
1
1
3
1
1

58
15
1
1
1
15
1
2

59
15
1
1
1
25
1
3

60
15
1
1
1
25
0
4

61
16
1
1
2
26
0
1

62
16
1
1
2
26
0
2

63
16
1
1
2
26
0
3

64
16
1
1
2
26
0
4

65
17
1
8
1
1
1
1

66
17
1
8
1
26
0
2

67
17
1
8
1
26
0
3

68
17
1
8
1
26
0
4

69
18
1
1
4
2
1
1

70
18
1
1
4
26
1
2

71
18
1
1
4
26
0
3

72
18
1
1
4
26
0
4

73
19
1
1
2
25
1
1

74
19
1
1
2
28
0
2

75
19
1
1
2
28
0
3

76
19
1
1
2
28
0
4

77
20
1
1
4
29
0
1

78
20
1
1
4
29
0
2

79
20
1
1
4
29
0
3

80
20
1
1
4
29
0
4

81
21
1
1
2
29
0
1

82
21
1
1
2
29
0
2

83
21
1
1
2
29
0
3

84
21
1
1
2
29
0
4

85
22
1
4
1
29
0
1

86
22
1
4
1
29
0
2

87
22
1
4
1
29
0
3

88
22
1
4
1
29
0
4

89
23
1
1
6
28
1
1

90
23
1
1
6
30
1
2

91
23
1
1
6
30
0
3

92
23
1
1
6
30
0
4

93
24
1
1
5
2
1
1

94
24
1
1
5
17
1
2

95
24
1
1
5
22
1
3

96
24
1
1
5
30
0
4

97
25
1
2
1
3
1
1

98
25
1
2
1
6
1
2

99
25
1
2
1
8
1
3

100
25
1
2
1
12
1
4

101
26
1
1
3
12
1
1

102
26
1
1
3
15
1
2

103
26
1
1
3
24
1
3

104
26
1
1
3
31
0
4

105
27
1
1
2
32
0
1

106
27
1
1
2
32
0
2

107
27
1
1
2
32
0
3

108
27
1
1
2
32
0
4

109
28
1
2
1
34
0
1

110
28
1
2
1
34
0
2

111
28
1
2
1
34
0
3

112
28
1
2
1
34
0
4

113
29
1
2
1
36
0
1

114
29
1
2
1
36
0
2

115
29
1
2
1
36
0
3

116
29
1
2
1
36
0
4

117
30
1
3
1
29
1
1

118
30
1
3
1
36
0
2

119
30
1
3
1
36
0
3

120
30
1
3
1
36
0
4

121
31
1
1
2
37
0
1

122
31
1
1
2
37
0
2

123
31
1
1
2
37
0
3

124
31
1
1
2
37
0
4

125
32
1
4
1
9
1
1

126
32
1
4
1
17
1
2

127
32
1
4
1
22
1
3

128
32
1
4
1
24
1
4

129
33
1
5
1
16
1
1

130
33
1
5
1
19
1
2

131
33
1
5
1
23
1
3

132
33
1
5
1
29
1
4

133
34
1
1
2
41
0
1

134
34
1
1
2
41
0
2

135
34
1
1
2
41
0
3

136
34
1
1
2
41
0
4

137
35
1
1
1
3
1
1

138
35
1
1
1
43
0
2

139
35
1
1
1
43
0
3

140
35
1
1
1
43
0
4

141
36
1
2
6
6
1
1

142
36
1
2
6
43
0
2

143
36
1
2
6
43
0
3

144
36
1
2
6
43
0
4

145
37
1
2
1
3
1
1

146
37
1
2
1
6
1
2

147
37
1
2
1
9
1
3

148
37
1
2
1
44
0
4

149
38
1
1
1
9
1
1

150
38
1
1
1
11
1
2

151
38
1
1
1
20
1
3

152
38
1
1
1
26
1
4

153
39
1
1
1
18
1
1

154
39
1
1
1
48
0
2

155
39
1
1
1
48
0
3

156
39
1
1
1
48
0
4

157
40
1
1
3
49
0
1

158
40
1
1
3
49
0
2

159
40
1
1
3
49
0
3

160
40
1
1
3
49
0
4

161
41
1
3
1
35
1
1

162
41
1
3
1
51
0
2

163
41
1
3
1
51
0
3

164
41
1
3
1
51
0
4

165
42
1
1
7
17
1
1

166
42
1
1
7
53
0
2

167
42
1
1
7
53
0
3

168
42
1
1
7
53
0
4

169
43
1
3
1
3
1
1

170
43
1
3
1
15
1
2

171
43
1
3
1
46
1
3

172
43
1
3
1
51
1
4

173
44
1
1
1
59
0
1

174
44
1
1
1
59
0
2

175
44
1
1
1
59
0
3

176
44
1
1
1
59
0
4

177
45
1
3
2
2
1
1

178
45
1
3
2
15
1
2

179
45
1
3
2
24
1
3

180
45
1
3
2
30
1
4

181
46
1
1
3
5
1
1

182
46
1
1
3
14
1
2

183
46
1
1
3
19
1
3

184
46
1
1
3
27
1
4

185
47
1
2
3
2
1
1

186
47
1
2
3
8
1
2

187
47
1
2
3
12
1
3

188
47
1
2
3
13
1
4

189
48
2
1
3
1
0
1

190
48
2
1
3
1
0
2

191
48
2
1
3
1
0
3

192
48
2
1
3
1
0
4

193
49
2
1
1
1
0
1

194
49
2
1
1
1
0
2

195
49
2
1
1
1
0
3

196
49
2
1
1
1
0
4

197
50
2
8
1
5
1
1

198
50
2
8
1
5
0
2

199
50
2
8
1
5
0
3

200
50
2
8
1
5
0
4

201
51
2
1
2
9
0
1

202
51
2
1
2
9
0
2

203
51
2
1
2
9
0
3

204
51
2
1
2
9
0
4

205
52
2
1
1
10
0
1

206
52
2
1
1
10
0
2

207
52
2
1
1
10
0
3

208
52
2
1
1
10
0
4

209
53
2
1
1
13
0
1

210
53
2
1
1
13
0
2

211
53
2
1
1
13
0
3

212
53
2
1
1
13
0
4

213
54
2
2
6
3
1
1

214
54
2
2
6
14
0
2

215
54
2
2
6
14
0
3

216
54
2
2
6
14
0
4

217
55
2
5
3
1
1
1

218
55
2
5
3
3
1
2

219
55
2
5
3
5
1
3

220
55
2
5
3
7
1
4

221
56
2
5
1
18
0
1

222
56
2
5
1
18
0
2

223
56
2
5
1
18
0
3

224
56
2
5
1
18
0
4

225
57
2
1
3
17
1
1

226
57
2
1
3
18
0
2

227
57
2
1
3
18
0
3

228
57
2
1
3
18
0
4

229
58
2
5
1
2
1
1

230
58
2
5
1
19
0
2

231
58
2
5
1
19
0
3

232
58
2
5
1
19
0
4

233
59
2
1
1
17
1
1

234
59
2
1
1
19
1
2

235
59
2
1
1
21
0
3

236
59
2
1
1
21
0
4

237
60
2
1
1
22
0
1

238
60
2
1
1
22
0
2

239
60
2
1
1
22
0
3

240
60
2
1
1
22
0
4

241
61
2
1
3
25
0
1

242
61
2
1
3
25
0
2

243
61
2
1
3
25
0
3

244
61
2
1
3
25
0
4

245
62
2
1
5
25
0
1

246
62
2
1
5
25
0
2

247
62
2
1
5
25
0
3

248
62
2
1
5
25
0
4

249
63
2
1
1
25
0
1

250
63
2
1
1
25
0
2

251
63
2
1
1
25
0
3

252
63
2
1
1
25
0
4

253
64
2
1
1
6
1
1

254
64
2
1
1
12
1
2

255
64
2
1
1
13
1
3

256
64
2
1
1
26
0
4

257
65
2
1
1
6
1
1

258
65
2
1
1
27
0
2

259
65
2
1
1
27
0
3

260
65
2
1
1
27
0
4

261
66
2
2
1
2
1
1

262
66
2
2
1
29
0
2

263
66
2
2
1
29
0
3

264
66
2
2
1
29
0
4

265
67
2
8
3
26
1
1

266
67
2
8
3
35
1
2

267
67
2
8
3
36
0
3

268
67
2
8
3
36
0
4

269
68
2
1
1
38
0
1

270
68
2
1
1
38
0
2

271
68
2
1
1
38
0
3

272
68
2
1
1
38
0
4

273
69
2
1
1
22
1
1

274
69
2
1
1
23
1
2

275
69
2
1
1
27
1
3

276
69
2
1
1
32
1
4

277
70
2
6
1
4
1
1

278
70
2
6
1
16
1
2

279
70
2
6
1
23
1
3

280
70
2
6
1
27
1
4

281
71
2
3
1
24
1
1

282
71
2
3
1
26
1
2

283
71
2
3
1
29
1
3

284
71
2
3
1
40
1
4

285
72
2
3
2
41
0
1

286
72
2
3
2
41
0
2

287
72
2
3
2
41
0
3

288
72
2
3
2
41
0
4

289
73
2
1
1
41
0
1

290
73
2
1
1
41
0
2

291
73
2
1
1
41
0
3

292
73
2
1
1
41
0
4

293
74
2
1
1
1
1
1

294
74
2
1
1
27
1
2

295
74
2
1
1
43
0
3

296
74
2
1
1
43
0
4

297
75
2
1
1
44
0
1

298
75
2
1
1
44
0
2

299
75
2
1
1
44
0
3

300
75
2
1
1
44
0
4

301
76
2
6
1
2
1
1

302
76
2
6
1
20
1
2

303
76
2
6
1
23
1
3

304
76
2
6
1
27
1
4

305
77
2
1
2
45
0
1

306
77
2
1
2
45
0
2

307
77
2
1
2
45
0
3

308
77
2
1
2
45
0
4

309
78
2
1
4
2
1
1

310
78
2
1
4
46
0
2

311
78
2
1
4
46
0
3

312
78
2
1
4
46
0
4

313
79
2
1
4
46
0
1

314
79
2
1
4
46
0
2

315
79
2
1
4
46
0
3

316
79
2
1
4
46
0
4

317
80
2
3
3
49
0
1

318
80
2
3
3
49
0
2

319
80
2
3
3
49
0
3

320
80
2
3
3
49
0
4

321
81
2
1
1
50
0
1

322
81
2
1
1
50
0
2

323
81
2
1
1
50
0
3

324
81
2
1
1
50
0
4

325
82
2
4
1
4
1
1

326
82
2
4
1
24
1
2

327
82
2
4
1
47
1
3

328
82
2
4
1
50
0
4

329
83
2
3
4
54
0
1

330
83
2
3
4
54
0
2

331
83
2
3
4
54
0
3

332
83
2
3
4
54
0
4

333
84
2
2
1
38
1
1

334
84
2
2
1
54
0
2

335
84
2
2
1
54
0
3

336
84
2
2
1
54
0
4

337
85
2
1
3
59
0
1

338
85
2
1
3
59
0
2

339
85
2
1
3
59
0
3

340
85
2
1
3
59
0
4

(b)
Describe what does the following R code segment achieve for this dataset:

# Fit a stratified model, clustered on patients

> bladder1 <- bladder[bladder$enum < 5, ]

> coxph(Surv(stop, event) ~ (rx + size + number) *

+             strata(enum) + cluster(id), bladder1)

ANSWER:

This R code segment first selects a subset, named bladder1, based on the criterion enum < 5, from the given dataset bladder. Then a Cox proportional hazard regression is applied for the duration.

10.
Execute the R code segment in Exercise 9. Comment on the results.

ANSWER:

In the R environment:

> install.packages("survival")

Installing package(s) into
‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)
> library(survival)

> ls("package:survival")

[1]
"aareg"
"aml"
"attrassign"

[4]
"basehaz"
"bladder"
"bladder1"

[7]
"bladder2"
"cancer"
"cch"

[10]
"cgd"
"clogit"
"cluster"

[13]
"colon"
"cox.zph"
"coxph"

[16]
"coxph.control"
"coxph.detail"
"coxph.fit"

[19]
"dsurvreg"
"format.Surv"
"frailty"

[22]
"frailty.gamma"
"frailty.gaussian"
"frailty.t"

[25]
"heart"
"is.na.coxph.penalty”
"is.na.ratetable"

[28]
"is.na.Surv"
"is.ratetable"
"is.Surv"

[31]
"jasa"
"jasa1"
"kidney"

[34]
"labels.survreg"
"leukemia"
"logan"

[37]
"lung"
"match.ratetable"
"mgus"

[40]
"mgus1"
"mgus2"
"nwtco"

[43]
"ovarian"
"pbc"
"pbcseq"

[46]
"pspline"
"psurvreg"
"pyears"

[49]
"qsurvreg"
"ratetable"
"ratetableDate"

[52]
"rats"
"ridge"
"stanford2"

[55]
"strata"
"Surv"
"survConcordance"

[58]
"survdiff"
"survexp"
"survexp.mn"

[61]
"survexp.us"
"survexp.usr"
"survfit"

[64]
"survfitcoxph.fit”
"survobrien"
"survreg"

[67]
"survreg.control"
"survreg.distributions"
"survreg.fit"

[70]
"survregDtest"
"survSplit"
"tcut"

[73]
"tobin"
"tt"
"untangle.specials"

[76]
"veteran"

> data(bladder)

> bladder


id
rx
number
size
stop
event
enum

1
1
1
1
3
1
0
1

2
1
1
1
3
1
0
2

3
1
1
1
3
1
0
3

4
1
1
1
3
1
0
4

5
2
1
2
1
4
0
1

6
2
1
2
1
4
0
2

7
2
1
2
1
4
0
3

8
2
1
2
1
4
0
4

9
3
1
1
1
7
0
1

10
3
1
1
1
7
0
2

11
3
1
1
1
7
0
3

12
3
1
1
1
7
0
4

13
4
1
5
1
10
0
1

14
4
1
5
1
10
0
2

15
4
1
5
1
10
0
3

16
4
1
5
1
10
0
4

17
5
1
4
1
6
1
1

18
5
1
4
1
10
0
2

19
5
1
4
1
10
0
3

20
5
1
4
1
10
0
4

21
6
1
1
1
14
0
1

22
6
1
1
1
14
0
2

23
6
1
1
1
14
0
3

24
6
1
1
1
14
0
4

25
7
1
1
1
18
0
1

26
7
1
1
1
18
0
2

27
7
1
1
1
18
0
3

28
7
1
1
1
18
0
4

29
8
1
1
3
5
1
1

30
8
1
1
3
18
0
2

31
8
1
1
3
18
0
3

32
8
1
1
3
18
0
4

33
9
1
1
1
12
1
1

34
9
1
1
1
16
1
2

35
9
1
1
1
18
0
3

36
9
1
1
1
18
0
4

37
10
1
3
3
23
0
1

38
10
1
3
3
23
0
2

39
10
1
3
3
23
0
3

40
10
1
3
3
23
0
4

41
11
1
1
3
10
1
1

42
11
1
1
3
15
1
2

43
11
1
1
3
23
0
3

44
11
1
1
3
23
0
4

45
12
1
1
1
3
1
1

46
12
1
1
1
16
1
2

47
12
1
1
1
23
1
3

48
12
1
1
1
23
0
4

49
13
1
3
1
3
1
1

50
13
1
3
1
9
1
2

51
13
1
3
1
21
1
3

52
13
1
3
1
23
0
4

53
14
1
2
3
7
1
1

54
14
1
2
3
10
1
2

55
14
1
2
3
16
1
3

56
14
1
2
3
24
1
4

57
15
1
1
1
3
1
1

58
15
1
1
1
15
1
2

59
15
1
1
1
25
1
3

60
15
1
1
1
25
0
4

61
16
1
1
2
26
0
1

62
16
1
1
2
26
0
2

63
16
1
1
2
26
0
3

64
16
1
1
2
26
0
4

65
17
1
8
1
1
1
1

66
17
1
8
1
26
0
2

67
17
1
8
1
26
0
3

68
17
1
8
1
26
0
4

69
18
1
1
4
2
1
1

70
18
1
1
4
26
1
2

71
18
1
1
4
26
0
3

72
18
1
1
4
26
0
4

73
19
1
1
2
25
1
1

74
19
1
1
2
28
0
2

75
19
1
1
2
28
0
3

76
19
1
1
2
28
0
4

77
20
1
1
4
29
0
1

78
20
1
1
4
29
0
2

79
20
1
1
4
29
0
3

80
20
1
1
4
29
0
4

81
21
1
1
2
29
0
1

82
21
1
1
2
29
0
2

83
21
1
1
2
29
0
3

84
21
1
1
2
29
0
4

85
22
1
4
1
29
0
1

86
22
1
4
1
29
0
2

87
22
1
4
1
29
0
3

88
22
1
4
1
29
0
4

89
23
1
1
6
28
1
1

90
23
1
1
6
30
1
2

91
23
1
1
6
30
0
3

92
23
1
1
6
30
0
4

93
24
1
1
5
2
1
1

94
24
1
1
5
17
1
2

95
24
1
1
5
22
1
3

96
24
1
1
5
30
0
4

97
25
1
2
1
3
1
1

98
25
1
2
1
6
1
2

99
25
1
2
1
8
1
3

100
25
1
2
1
12
1
4

101
26
1
1
3
12
1
1

102
26
1
1
3
15
1
2

103
26
1
1
3
24
1
3

104
26
1
1
3
31
0
4

105
27
1
1
2
32
0
1

106
27
1
1
2
32
0
2

107
27
1
1
2
32
0
3

108
27
1
1
2
32
0
4

109
28
1
2
1
34
0
1

110
28
1
2
1
34
0
2

111
28
1
2
1
34
0
3

112
28
1
2
1
34
0
4

113
29
1
2
1
36
0
1

114
29
1
2
1
36
0
2

115
29
1
2
1
36
0
3

116
29
1
2
1
36
0
4

117
30
1
3
1
29
1
1

118
30
1
3
1
36
0
2

119
30
1
3
1
36
0
3

120
30
1
3
1
36
0
4

121
31
1
1
2
37
0
1

122
31
1
1
2
37
0
2

123
31
1
1
2
37
0
3

124
31
1
1
2
37
0
4

125
32
1
4
1
9
1
1

126
32
1
4
1
17
1
2

127
32
1
4
1
22
1
3

128
32
1
4
1
24
1
4

129
33
1
5
1
16
1
1

130
33
1
5
1
19
1
2

131
33
1
5
1
23
1
3

132
33
1
5
1
29
1
4

133
34
1
1
2
41
0
1

134
34
1
1
2
41
0
2

135
34
1
1
2
41
0
3

136
34
1
1
2
41
0
4

137
35
1
1
1
3
1
1

138
35
1
1
1
43
0
2

139
35
1
1
1
43
0
3

140
35
1
1
1
43
0
4

141
36
1
2
6
6
1
1

142
36
1
2
6
43
0
2

143
36
1
2
6
43
0
3

144
36
1
2
6
43
0
4

145
37
1
2
1
3
1
1

146
37
1
2
1
6
1
2

147
37
1
2
1
9
1
3

148
37
1
2
1
44
0
4

149
38
1
1
1
9
1
1

150
38
1
1
1
11
1
2

151
38
1
1
1
20
1
3

152
38
1
1
1
26
1
4

153
39
1
1
1
18
1
1

154
39
1
1
1
48
0
2

155
39
1
1
1
48
0
3

156
39
1
1
1
48
0
4

157
40
1
1
3
49
0
1

158
40
1
1
3
49
0
2

159
40
1
1
3
49
0
3

160
40
1
1
3
49
0
4

161
41
1
3
1
35
1
1

162
41
1
3
1
51
0
2

163
41
1
3
1
51
0
3

164
41
1
3
1
51
0
4

165
42
1
1
7
17
1
1

166
42
1
1
7
53
0
2

167
42
1
1
7
53
0
3

168
42
1
1
7
53
0
4

169
43
1
3
1
3
1
1

170
43
1
3
1
15
1
2

171
43
1
3
1
46
1
3

172
43
1
3
1
51
1
4

173
44
1
1
1
59
0
1

174
44
1
1
1
59
0
2

175
44
1
1
1
59
0
3

176
44
1
1
1
59
0
4

177
45
1
3
2
2
1
1

178
45
1
3
2
15
1
2

179
45
1
3
2
24
1
3

180
45
1
3
2
30
1
4

181
46
1
1
3
5
1
1

182
46
1
1
3
14
1
2

183
46
1
1
3
19
1
3

184
46
1
1
3
27
1
4

185
47
1
2
3
2
1
1

186
47
1
2
3
8
1
2

187
47
1
2
3
12
1
3

188
47
1
2
3
13
1
4

189
48
2
1
3
1
0
1

190
48
2
1
3
1
0
2

191
48
2
1
3
1
0
3

192
48
2
1
3
1
0
4

193
49
2
1
1
1
0
1

194
49
2
1
1
1
0
2

195
49
2
1
1
1
0
3

196
49
2
1
1
1
0
4

197
50
2
8
1
5
1
1

198
50
2
8
1
5
0
2

199
50
2
8
1
5
0
3

200
50
2
8
1
5
0
4

201
51
2
1
2
9
0
1

202
51
2
1
2
9
0
2

203
51
2
1
2
9
0
3

204
51
2
1
2
9
0
4

205
52
2
1
1
10
0
1

206
52
2
1
1
10
0
2

207
52
2
1
1
10
0
3

208
52
2
1
1
10
0
4

209
53
2
1
1
13
0
1

210
53
2
1
1
13
0
2

211
53
2
1
1
13
0
3

212
53
2
1
1
13
0
4

213
54
2
2
6
3
1
1

214
54
2
2
6
14
0
2

215
54
2
2
6
14
0
3

216
54
2
2
6
14
0
4

217
55
2
5
3
1
1
1

218
55
2
5
3
3
1
2

219
55
2
5
3
5
1
3

220
55
2
5
3
7
1
4

221
56
2
5
1
18
0
1

222
56
2
5
1
18
0
2

223
56
2
5
1
18
0
3

224
56
2
5
1
18
0
4

225
57
2
1
3
17
1
1

226
57
2
1
3
18
0
2

227
57
2
1
3
18
0
3

228
57
2
1
3
18
0
4

229
58
2
5
1
2
1
1

230
58
2
5
1
19
0
2

231
58
2
5
1
19
0
3

232
58
2
5
1
19
0
4

233
59
2
1
1
17
1
1

234
59
2
1
1
19
1
2

235
59
2
1
1
21
0
3

236
59
2
1
1
21
0
4

237
60
2
1
1
22
0
1

238
60
2
1
1
22
0
2

239
60
2
1
1
22
0
3

240
60
2
1
1
22
0
4

241
61
2
1
3
25
0
1

242
61
2
1
3
25
0
2

243
61
2
1
3
25
0
3

244
61
2
1
3
25
0
4

245
62
2
1
5
25
0
1

246
62
2
1
5
25
0
2

247
62
2
1
5
25
0
3

248
62
2
1
5
25
0
4

249
63
2
1
1
25
0
1

250
63
2
1
1
25
0
2

251
63
2
1
1
25
0
3

252
63
2
1
1
25
0
4

253
64
2
1
1
6
1
1

254
64
2
1
1
12
1
2

255
64
2
1
1
13
1
3

256
64
2
1
1
26
0
4

257
65
2
1
1
6
1
1

258
65
2
1
1
27
0
2

259
65
2
1
1
27
0
3

260
65
2
1
1
27
0
4

261
66
2
2
1
2
1
1

262
66
2
2
1
29
0
2

263
66
2
2
1
29
0
3

264
66
2
2
1
29
0
4

265
67
2
8
3
26
1
1

266
67
2
8
3
35
1
2

267
67
2
8
3
36
0
3

268
67
2
8
3
36
0
4

269
68
2
1
1
38
0
1

270
68
2
1
1
38
0
2

271
68
2
1
1
38
0
3

272
68
2
1
1
38
0
4

273
69
2
1
1
22
1
1

274
69
2
1
1
23
1
2

275
69
2
1
1
27
1
3

276
69
2
1
1
32
1
4

277
70
2
6
1
4
1
1

278
70
2
6
1
16
1
2

279
70
2
6
1
23
1
3

280
70
2
6
1
27
1
4

281
71
2
3
1
24
1
1

282
71
2
3
1
26
1
2

283
71
2
3
1
29
1
3

284
71
2
3
1
40
1
4

285
72
2
3
2
41
0
1

286
72
2
3
2
41
0
2

287
72
2
3
2
41
0
3

288
72
2
3
2
41
0
4

289
73
2
1
1
41
0
1

290
73
2
1
1
41
0
2

291
73
2
1
1
41
0
3

292
73
2
1
1
41
0
4

293
74
2
1
1
1
1
1

294
74
2
1
1
27
1
2

295
74
2
1
1
43
0
3

296
74
2
1
1
43
0
4

297
75
2
1
1
44
0
1

298
75
2
1
1
44
0
2

299
75
2
1
1
44
0
3

300
75
2
1
1
44
0
4

301
76
2
6
1
2
1
1

302
76
2
6
1
20
1
2

303
76
2
6
1
23
1
3

304
76
2
6
1
27
1
4

305
77
2
1
2
45
0
1

306
77
2
1
2
45
0
2

307
77
2
1
2
45
0
3

308
77
2
1
2
45
0
4

309
78
2
1
4
2
1
1

310
78
2
1
4
46
0
2

311
78
2
1
4
46
0
3

312
78
2
1
4
46
0
4

313
79
2
1
4
46
0
1

314
79
2
1
4
46
0
2

315
79
2
1
4
46
0
3

316
79
2
1
4
46
0
4

317
80
2
3
3
49
0
1

318
80
2
3
3
49
0
2

319
80
2
3
3
49
0
3

320
80
2
3
3
49
0
4

321
81
2
1
1
50
0
1

322
81
2
1
1
50
0
2

323
81
2
1
1
50
0
3

324
81
2
1
1
50
0
4

325
82
2
4
1
4
1
1

326
82
2
4
1
24
1
2

327
82
2
4
1
47
1
3

328
82
2
4
1
50
0
4

329
83
2
3
4
54
0
1

330
83
2
3
4
54
0
2

331
83
2
3
4
54
0
3

332
83
2
3
4
54
0
4

333
84
2
2
1
38
1
1

334
84
2
2
1
54
0
2

335
84
2
2
1
54
0
3

336
84
2
2
1
54
0
4

337
85
2
1
3
59
0
1

338
85
2
1
3
59
0
2

339
85
2
1
3
59
0
3

340
85
2
1
3
59
0
4

> bladder1 <- bladder[bladder$enum < 5,]

> bladder1


Id
rx
number
size
stop
event
enum

1
1
1
1
3
1
0
1

2
1
1
1
3
1
0
2

3
1
1
1
3
1
0
3

4
1
1
1
3
1
0
4

5
2
1
2
1
4
0
1

-----------------------------------------------------------------------------------------
339
85
2
1
3
59
0
3

340
85
2
1
3
59
0
4

>

> coxph(Surv(stop, event) ~ (rx + size + number)*
+             strata(enum) + cluster(id), bladder1)

Call:

coxph(formula = Surv(stop, event) ~ (rx + size + number) *
strata(enum) +

cluster(id), data = bladder1)


coef
exp(coef)
se(coef)
robust se
z
p

rx
-0.5260
0.591
0.3158
0.3152
-1.669
0.0950

size
0.0696
1.072
0.1016
0.0886
0.785
0.4300

number
0.2382
1.269
0.0759
0.0746
3.193
0.0014

 rx:strata(enum)enum=2

-0.1063
0.899
0.5042
0.3340
-0.318
0.7500

rx:strata(enum)enum=3

-0.1725
0.842
0.5578
0.3987
-0.433
0.6700

rx:strata(enum)enum=4

-0.1095
0.896
0.6573
0.5064
-0.216
0.8300

size:strata(enum)enum=2

-0.1474
0.863
0.1680
0.1141
-1.292
0.2000

size:strata(enum)enum=3

-0.2835
0.753
0.2089
0.1522
-1.862
0.0630

size:strata(enum)enum=4

-0.2761
0.759
0.2522
0.1890
-1.460
0.1400

number:strata(enum)enum=2

-0.1013
0.904
0.1190
0.1176
-0.861
0.3900

number:strata(enum)enum=3

-0.0647
0.937
0.1293
0.1203
-0.537
0.5900

number:strata(enum)enum=4 

0.0943
1.099
0.1459
0.1197
0.788
0.4300

Likelihood ratio test=30.1  on 12 df, p=0.00271  n= 340,
number of events= 112

Exercises for Section 6.2

____________________________

1.
In Example 6.3. what are the functions of the following R code segment used in analyzing the dataset lung?

> result <- coxr(Surv(time, status) ~ age + sex + ph.karno +

meal.cal + wt.loss, data = lung)

ANSWER:

The R function coxr() efficiently and robustly fits the Cox proportional hazards regression model in its basic form, where the explanatory variables are time independent with one event per subject. This method is based on smooth modification of the partial likelihood. The approach maximizes an object function, which is a smooth modification of the partial likelihood.

2.
In place of the function coxr() used in the analysis, what are some other R functions that may produce similar results?

ANSWER:

Other R functions that may produce similar results as the function coxr() include:


[image: image72]
The Kaplan–Meier (K–M) estimator


[image: image73]
The Lexis diagram

3.
Also in Example 6.5, what are the functions of the following R code-segment used in analyzing the dataset veteran,

> result <- coxr(Surv(time,status) ~ age + trt + celltype +

 +                       karno diagtime + prior, data = veteran)

ANSWER (taken from the CRAN website):
The R function coxr(), the robustly proportional hazards regression model, provides efficiently and robustly the Cox proportional hazards regression model in its basic form, where explanatory variables are time independent with one event per subject. This method is based on a smooth modification of the partial likelihood.

The method consists of maximization of an objective function that is a smooth modification of the partial likelihood. Observations with excessive values of

Λ(T) exp(β′Z),
where Λ (the cumulated hazard), β (vector of parameters), Z (explanatory variables), and T (possibly censored survival time) are down-weighted. Both Λ and β are iteratively robustly estimated.

Numerical results are supported by a graphical tool plot, which in a series of five graphs compares how well data are explained by the estimated proportional hazards model with nonrobust and robust methods. The first graph shows the standardized difference of two estimated survival functions, one using the Cox model and the other using the K–M estimator. The other four graphs show the same differences for four strata, defined by the quartiles of the estimated linear predictor. Comparison of estimation results, along with analysis of the graphs, may yield very detailed information about the model fit.

4.
Again, in place of the function coxr() used in the analysis, what are some other R functions that may produce similar results?

ANSWER:

Other R functions that may produce similar results as the function coxr() include:


[image: image74]
the K–M estimator


[image: image75]
the Lexis diagram

In place of the function coxr() used in the analysis, what are some other R functions that may produce similar results?

ANSWER:

Other R functions that may produce similar results as the function coxr() include:


[image: image76]
the K–M estimator


[image: image77]
the Lexis diagram

5.
 With reference to the “Lexis Diagram for a Cohort Study of the Relationship Diet and the Incidence of Coronary Heart Disease (CHD)”) on page 336/Section 6.2 of the book, what are the functions of the following R code segment used in analyzing the dataset veteran.

>  Lexis.diagram(age = c(30, 75), date=c(1965. 1990),

+  entry.date = cal.yr(doe), exit.date = cal.yr(dox),

+                                              birth.date = cal.yr(dob),

+     fail = (fall > 0), pch.fail = c(NA, 16), col.fail=c(NA, “red”),

+                                               cex.fail = 1.0,

+                                                   date = diet)

ANSWER (taken from the R website):
The Lexis Diagram

Description: A Lexis diagram may be constructed optionally with lifelines from a cohort, and with lifelines of a cohort if supplied. Intended for presentation purposes.

Form of R code segment for a Lexis diagram:

Lexis.diagram( age = c( 0, 60),

alab = "Age",

date = c( 1940, 2000 ),

dlab = "Calendar time",

int = 5,

lab.int = 2*int,

col.life = "black",

lwd.life = 2,

age.grid = TRUE,

date.grid = TRUE,

coh.grid = FALSE,

col.grid = gray(0.7),

lwd.grid = 1,

las = 1,

entry.date = NA,

entry.age = NA,

exit.date = NA,

exit.age = NA,

risk.time = NA,

birth.date = NA,

fail = NA,

cex.fail = 1.1,

pch.fail = c(NA,16),

col.fail = rep( col.life, 2 ),

data = NULL, ... )

Arguments:
	age
	Numerical vector of length 2, giving the age range for the diagram

	alab
	Label on the age axis.

	date
	Numerical vector of length 2, giving the calendar time range for the diagram.

	dlab
	Label on the calendar time axis.

	int
	The interval between grid lines in the diagram. If a vector of length 2 is given, the first value will be used for spacing of the age grid and the second for spacing of the date grid.

	lab.int
	The interval between labeling of the grids.

	col.life
	Color of the lifelines.

	lwd.life
	Width of the lifelines.

	age.grid
	Should grid lines be drawn for age?

	date.grid
	Should grid lines be drawn for date?

	coh.grid
	Should grid lines be drawn for birth cohorts (diagonals)?

	col.grid
	Color of the grid lines.

	lwd.grid
	Width of the grid lines.

	las
	How are the axis labels plotted?

	entry.date, entry.age, exit.date, exit.age, risk.time, birth.date
	Numerical vectors defining lifelines to be plotted in the diagram. At least three must be given to produce lines. Not all subsets of three will suffice; the given subset has to define lifelines. If insufficient data are given, no lifelines are produced.

	fail
	Logical event status at exit for the persons whose lifelines are plotted.

	pch.fail
	Symbols at the end of the lifelines for censorings (fail==0) and failures (fail != 0).

	cex.fail
	Expansion of the status marks at the end of lifelines.

	col.fail
	Character vector of length 2 giving the color of the failure marks for censorings and failures, respectively.

	data
	Data frame in which to interpret the arguments.

	...
	Arguments to be passed on to the initial call to plot.


Details:
The default unit for the supplied variables is (calendar) years. If any of the variables entry.date, exit.date, or birth.date are of class "Date" or if any of the variables entry.age, exit.age, or risk.time are of class "difftime", they will be converted to calendar years and plotted correctly in the diagram. The returned data frame will then have columns of classes "Date" and "difftime".

Value:
If sufficient information on lifelines is given, a data frame with one row per person and columns with entry ages and dates, birth date, risk time, and status is filled in.
Side effect: A plot of a Lexis diagram with the lifelines in it is produced. This will be the main reason for using the function. If the primary aim is to illustrate follow-up of a cohort, then it is better to represent the follow-up in a Lexis object and use the generic plot.Lexis function.

Examples:
Lexis.diagram( entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = c(1970,1931,1925.7),

fail = c(TRUE,TRUE,FALSE) )

LL <- Lexis.diagram(entry.age = sample( 0:50, 17,
                                   replace=TRUE ),

risk.time = sample( 5:40, 17, r=TRUE),

birth.date = sample( 1910:1980, 17, r=TRUE ),

fail = sample( 0:1, 17, r=TRUE ),

cex.fail = 1.1,

lwd.life = 2 )

# Identify the persons' entry and exits

text( LL$exit.date, LL$exit.age, paste(1:nrow(LL)), col="red",   
        font=2, adj=c(0,1) )

text( LL$entry.date, LL$entry.age, paste(1:nrow(LL)), col="blue", font=2, adj=c(1,0) )

data( nickel )

attach( nickel )

LL <- Lexis.diagram( age=c(10,100), date=c(1900,1990),

entry.age=age1st, exit.age=ageout, birth.date=dob,

fail=(icd %in% c(162,163)), lwd.life=1,

cex.fail=0.8, col.fail=c("green","red") )

abline( v=1934, col="blue" )

nickel[1:10,]

LL[1:10,]

6.
In the CRAN package survival, the function survfit() computes the predicted survival function for a Cox proportional hazards model. Its general usage form is:

>  survfit (formula, newdata,

+              se.fit=TRUE, =.95,

+              individual=FALSE,

+              type,varitype,

+              conf.type=c(“log”,”log-log”,”plain”,”none”),

+              censor=TRUE, id, …)

What is the meaning of each of the arguments in the above function survfit()?

(Hint: Go to the CRAN website, locate the survfit.coxph{survival} page for the definitions of the arguments of this function.)

ANSWER (taken from the CRAN website):
survfit(formula, data, weights, subset, na.action, etype, id, ...)

Arguments:
formula
A formula object, which must have a Surv object as the response on the left of the ~ operator and, if desired, terms separated by + operators on the right. One of the terms may be a strata object. For a single survival curve, the right hand side should be ~ 1.

data
A data frame in which to interpret the variables named in the formula, subset and weights arguments.

weights
The weights must be nonnegative and it is strongly recommended that they be strictly positive, as zero weights are ambiguous, compared to use of the subset argument.

subset
Expression saying that only a subset of the rows of the data should be used in the fit.

na.action
A missing data filter function, applied to the model frame, after any subset argument has been used. Default is options()$na.action.

etype
A variable giving the type of event. The presence of this variable signals the program to compute the cumulative incidence estimate. For each event status==1, the etype variable indicates the type of event. For a censored observation, the value of etype is ignored—but do not set it to NA, as that will cause na.action to delete the observation.

id
Identifies individual subjects, when a given person can have multiple lines of data. When used with the etype variable, this allows the computation of a cumulative prevalence estimate, that is, the incidence over time.

...
The following additional arguments are passed to internal functions called by survfit.

Details:
The estimates used are the Kalbfleisch–Prentice (Kalbfleisch & Prentice, 1980, p. 86) and the Tsiatis/Link/Breslow, which reduce to the k–M and Fleming–Harrington (F–H) estimates, respectively, when the weights are unity.

The Greenwood formula for the variance is a sum of terms d/(n*(n-m)), where d is the number of deaths at a given time point, n is the sum of weights for all individuals still at risk at that time, and m is the sum of weights for the deaths at that time. The justification is based on a binomial argument when weights are all equal to one; extension to the weighted case is ad hoc. Tsiatis (1981) proposes a sum of terms d/(n*n), based on a counting process argument that includes the weighted case.
The two variants of the F–H estimate have to do with how ties are handled. If there were 3 deaths out of 10 at risk, then the first increments the hazard by 3/10 and the second by 1/10 + 1/9 + 1/8. For the first method S(t) = exp(H), where H is the Nelson–Aalen cumulative hazard estimate, whereas the fh2 method will give S(t) results closer to the K–M estimate.

When the dataset includes left censored or interval censored data (or both), then the expectation-maximization (EM) approach of Turnbull is used to compute the overall curve. When the baseline method is the K–M, this is known to converge to the maximum likelihood estimate.

The cumulative incidence curve is an alternative to the K–M for competing risks data. For instance, in patients with MGUS, conversion to an overt plasma cell malignancy occurs at a nearly constant rate among those still alive. A K–M estimate, treating death due to other causes as censored, gives a 20-year cumulate rate of 33% for the 241 early patients of Kyle. This estimates the incidence of conversion, if other causes of death were removed.

The CI estimate, on the other hand, estimates the total number of conversions that will actually occur. Because the population is older, this is much smaller than the K–M, 22% at 20 years for Kyle’s data. If there were no censoring, then CI(t) could very simply be computed as total number of patients with progression by time t divided by the sample size n.

Value:
An object of class "survfit". See survfit.object for details. Methods defined for survfit objects are print, plot, lines, and points.

7.
Within the CRAN package survival, the following R code segment fits a K–M model for the dataset aml, then plots the K–M curve:

>

>  fit <- survfit(Surv(time, status) ~ x, data = aml)

> plot(fit, Ity + 2:3)

> legend(100, .8, c(“Maintained”, “Nonmaintained”), Ity = 2:3)

>

(a)
What are the functions of the above R code segment used in analyzing the dataset aml?

(b)
Run the above code-segment in an R environment.

(c)
Describe the results.

ANSWERS:

(a)
(Taken from the CRAN website)

>  ??survfit

> # Outputting:
plot.survfit {survival}

R Documentation

Plot method for survfit objects

Description:
A plot of survival curves is produced, one curve for each strata. The log=T option does extra work to avoid log(0), and to try to create a pleasing result. If there are zeros, they are plotted by default at 0.8 times the smallest nonzero value on the curve(s).

Usage:
## S3 method for class 'survfit'

plot(x, conf.int=, mark.time=TRUE,

mark=3, col=1, lty=1, lwd=1, cex=1, log=FALSE, xscale=1, yscale=1,

firstx=0, firsty=1, xmax, ymin=0, fun,

xlab="", ylab="", xaxs="S", ...)

Arguments:
x
An object of class survfit, usually returned by the survfit function.

conf.int
Determines whether confidence intervals will be plotted. The default is to do so if there is only one curve, that is, no strata.

mark.time
Controls the labeling of the curves. If set to FALSE, no labeling is done. If TRUE, then curves are marked at each censoring time, which is also not a death time. If mark.time is a numeric vector, then curves are marked at the specified time points.

mark
Vector of mark parameters, which will be used to label the curves. The lines help file contains examples of the possible marks. The vector is reused cyclically if it is shorter than the number of curves.

col
A vector of integers specifying colors for each curve. The default value is 1.

lty
A vector of integers specifying line types for each curve. The default value is 1.
lwd
A vector of numeric values for line widths. The default value is 1.

cex
A numeric value specifying the size of the marks. This is not treated as a vector; all marks have the same size.

log
A logical value, if TRUE the y-axis will be on a log scale. Alternately, one of the standard character strings "x", "y", or "xy" can be given to specific logarithmic horizontal and/or vertical axes.

yscale
A numeric value used to multiply the labels on the y-axis. A value of 100, for instance, would be used to give a percent scale. Only the labels are changed, not the actual plot coordinates so that adding a curve with "lines(surv.exp(...))", say, will perform as it did without the yscale argument.

xscale
A numeric value used like yscale for labels on the x-axis. A value of 365.25 will give labels in years instead of the original days.

firstx, firsty
The starting point for the survival curves. If either of these is set to NA, the plot will start at the first time point of the curve. By default, the plot program obeys tradition by having the plot start at (0,0). If the start.time argument is used in survfit, first x is set to that value.

xmax
The maximum horizontal plot coordinate. This can be used to shrink the range of a plot. It shortens the curve before plotting it so that unlike using the xlim graphical parameter, warning messages about out of bounds points are not generated.

ymin
Lower boundary for y values. Survival curves are most often drawn in the range of 0–1, even if none of the curves approach zero. The parameter is ignored if the fun argument is present, or if it has been set to NA.

fun
An arbitrary function defining a transformation of the survival curve. For example, fun=log is an alternative way to draw a log-survival curve (but with the axis labeled with log(S) values), and fun=sqrt would generate a curve on the square root scale. Four often used transformations can be specified with a character argument instead: "log" is the same as using the log=T option, "event" plots cumulative events (f(y) = 1-y), "cumhaz" plots the cumulative hazard function (f(y) = -log(y)), and "cloglog" creates a complimentary log–log survival plot (f(y) = log(-log(y)) along with log scale for the x-axis).

xlab
Label given to the x-axis.

ylab
Label given to the y-axis.

xaxs
Either "S" for a survival curve or a standard x-axis style as listed in par. Survival curves are usually displayed with the curve touching the y-axis, but not touching the bounding box of the plot on the other three sides. Type "S" accomplishes this by manipulating the plot range and then using the "i" style internally.

...
For future methods.
Details:
When the survfit function creates a multi-state survival curve, the resulting object also has class ‘survfitms’. The only difference in the plots is that that it defaults to a curve that goes from lower left to upper right (starting at 0), where survival curves default to starting at 1 and go down. All other options are identical.

Value:
A list with components x and y, containing the coordinates of the last point on each of the curves (but not the confidence limits). This may be useful for labeling. See also

(a)
par, survfit, lines.survfit.
Examples:
leukemia.surv <- survfit(Surv(time, status) ~ x, data = aml)

plot(leukemia.surv, lty = 2:3)

legend(100, .9, c("Maintenance", "No Maintenance"), lty = 2:3)

title("Kaplan-Meier Curves\nfor AML Maintenance Study")

lsurv2 <- survfit(Surv(time, status) ~ x, aml, type='fleming')

plot(lsurv2, lty=2:3, fun="cumhaz",

xlab="Months", ylab="Cumulative Hazard")

(b)
Running the given code segment in an R environment:

> install.packages("survival")

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)

--- Please select a CRAN mirror for use in this session---

trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/survival_2.37-4.zip'

Content type 'application/zip' length 3033391 bytes (2.9 Mb)

opened URL

downloaded 2.9 Mb

package ‘survival’ successfully unpacked and MD5 sums checked

The downloaded packages are in

C:\Users\bertchan\AppData\Local\Temp\RtmpSkodSW\downlo

ded_packages

> library(survival)

Loading required package: splines

Warning message:

package ‘survival’ was built under R version 2.14.2

> ls("package:survival")

[1]
"aareg"
"aml"
"attrassign"

[4]
"basehaz"
"bladder"
"bladder1"

[7]
"bladder2"
"cancer"
"cch"

[10]
"cgd"
"clogit"
"cluster"

[13]
"colon"
"cox.zph"
"coxph"

[16]
"coxph.control"
"coxph.detail"
"coxph.fit"

[19]
"dsurvreg"
"format.Surv"
"frailty"

[22]
"frailty.gamma"
"frailty.gaussian"
"frailty.t"

[25]
"heart"
"is.na.coxph.penalty"
"is.na.ratetable"

[28]
"is.na.Surv"
"is.ratetable"
"is.Surv"

[31]
"jasa"
"jasa1"
"kidney"

[34]
"labels.survreg"
"leukemia"
"logan"

[37]
"lung"
"match.ratetable"
"mgus"

[40]
"mgus1"
"mgus2"
"nwtco"

[43]
"ovarian"
"pbc"
"pbcseq"

[46]
"pspline"
"psurvreg"
"pyears"

[49]
"qsurvreg"
"ratetable"
"ratetableDate"

[52]
"rats"
"rats2"
"ridge"

[55]
"stanford2"
"strata"
"Surv"

[58]
"survConcordance"
"survdiff"
"survexp"

[61]
"survexp.mn"
"survexp.us"
"survexp.usr"

[64]
"survfit"
"survfitcoxph.fit"
"survobrien"

[67]
"survreg"
"survreg.control"
"survreg.distributions"

[70]
"survreg.fit"
"survregDtest"
"survSplit"

[73]
"tcut"
"tobin"
"tt"

[76]
"untangle.specials"
"uspop2"
"veteran"

>

> data(aml)

> attach(aml)

> aml

> # Outputting:

time
status
x

1
9
1
Maintained

2
13
1
Maintained

3
13
0
Maintained

4
18
1
Maintained

5
23
1
Maintained

6
28
0
Maintained

7
31
1
Maintained

8
34
1
Maintained

9
45
0
Maintained

10
48
1
Maintained

11
161
0
Maintained

12
5
1
Nonmaintained

13
5
1
Nonmaintained

14
8
1
Nonmaintained

15
8
1
Nonmaintained

16
12
1
Nonmaintained

17
16
0
Nonmaintained

18
23
1
Nonmaintained

19
27
1
Nonmaintained

20
30
1
Nonmaintained

21
33
1
Nonmaintained

22
43
1
Nonmaintained

23
45
1
Nonmaintained

>

> fit <- survfit(Surv(time, status) ~ x, data = aml)

> plot(fit, lty= 2:3)

> # Outputting: Figure S6.3.1
>

[image: image78.jpg]R

o

00

150

100

50




Figure S6.3.1 Kaplan–Meier model plot for the dataset aml, using the CRAN package survival.
> legend(100, .8, c("Maintained", "Nonmaintained"), lty= 2:3)

> # Outputting: Figure S6.3.2
>

[image: image79.jpg]-=--- Maintained

Nonmaintained

e e

o

00

150

100

50




Figure S6.3.2 Kaplan–Meier model plot with Legend, for the dataset aml, using the CRAN package survival.
8.
Again, within the CRAN package survival, the following R code segment fits a Cox proportional hazards model for the dataset ovarian (for a 60-year-old case subject), then plots the model curve:

> fit <- coxph(Surv(futime, fustat) ~ age, data = ovarian)

> plot(survfit(fit, newdata=data.frame(age=60)),

+         xscale=365.25, xlab = "Years", ylab="Survival")

(a)
What are the functions of the above R code segment used in analyzing the dataset ovarian?

(b)
Run the above code segment in an R environment.

(c)
Describe the results.

ANSWER:

(a)
The R code function coxph(), is the Cox proportional hazard regression for duration dependent variables, may be used to analyze survival data (from the CRAN Website)

>

> ??survfit

> # Outputting:
coxph.object {survival}

R Documentation

Proportional Hazards Regression Object

Description:
This class of objects is returned by the coxph class of functions to represent a fitted proportional hazards model. Objects of this class have methods for the functions print, summary, residuals, predict, and survfit.

Arguments:
coefficients
The vector of coefficients. If the model is overdetermined, there will be missing values in the vector corresponding to the redundant columns in the model matrix.

var
The variance matrix of the coefficients. Rows and columns corresponding to any missing coefficients are set to zero.

naive.var
This component will be present only if the robust option was true. If so, the var component will contain the robust estimate of variance, and this component will contain the ordinary estimate.

loglik
A vector of length 2 containing the log-likelihood with the initial values and with the final values of the coefficients.

score
Value of the efficient score test, at the initial value of the coefficients.

rscore
The robust log-rank statistic, if a robust variance was requested.

wald.test
The Wald test of whether the final coefficients differ from the initial values.

iter
Number of iterations used.

linear.predictors
The vector of linear predictors, one per subject. Note that this vector has been centered, see predict.coxph for more details.

residuals
The martingale residuals.

means
Vector of column means of the X matrix. Subsequent survival curves are adjusted to this value.

n
The number of observations used in the fit.

nevent
The number of events (usually deaths) used in the fit.

weights
The vector of case weights, if one was used.

method
The computation method used.

na.action
The na.action attribute, if any, that was returned by the na.action routine.

The object will also contain the following; for documentation, see the lm object: terms, assign, formula, call, and, optionally, x, y, and/or frame.

(b)
Running the given code segment in an R environment:

>

> install.packages("survival")

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’(as ‘lib’ is unspecified)

--- Please select a CRAN mirror for use in this session---

CRAN USA CA2 selected.

trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/survival_2.37-4.zip'

Content type 'application/zip' length 3033391 bytes (2.9 Mb)

opened URL

downloaded 2.9 Mb

package ‘survival’ successfully unpacked and MD5 sums checked

The downloaded packages are in

C:\Users\bertchan\AppData\Local\Temp\RtmpSkodSW\downloaded_packages

>

> library(survival)

Loading required package: splines

Warning message:

package ‘survival’ was built under R version 2.14.2

>

> ls("package:survival"), # Outputting:
[1]
"aareg"
"aml"
"attrassign"

[4]
"basehaz"
"bladder"
"bladder1"

[7]
"bladder2"
"cancer"
"cch"

[10]
"cgd"
"clogit"
"cluster"

[13]
"colon"
"cox.zph"
"coxph"

[16]
"coxph.control"
"coxph.detail"
"coxph.fit"

[19]
"dsurvreg"
"format.Surv"
"frailty"

[22]
"frailty.gamma"
"frailty.gaussian"
"frailty.t"

[25]
"heart"
"is.na.coxph.penalty"
"is.na.ratetable"

[28]
"is.na.Surv"
"is.ratetable"
"is.Surv"

[31]
"jasa"
"jasa1"
"kidney"

[34]
"labels.survreg"
"leukemia"
"logan"

[37]
"lung"
"match.ratetable"
"mgus"

[40]
"mgus1"
"mgus2"
"nwtco"

[43]
"ovarian"
"pbc"
"pbcseq"

[46]
"pspline"
"psurvreg"
"pyears"

[49]
"qsurvreg"
"ratetable"
"ratetableDate"

[52]
"rats"
"rats2"
"ridge"

[55]
"stanford2"
"strata"
"Surv"

[58]
"survConcordance"
"survdiff"
"survexp"

[61]
"survexp.mn"
"survexp.us"
"survexp.usr"

[64]
"survfit"
"survfitcoxph.fit"
"survobrien"

[67]
"survreg"
"survreg.control"
"survreg.distributions"

[70]
"survreg.fit"
"survregDtest"
"survSplit"

[73]
"tcut"
"tobin"
"tt"

[76]
"untangle.specials"
"uspop2"
"veteran"

>

> data(ovarian)

> attach(ovarian)

> ovarian

> # Outputting:

futime
fustat
age
resid.ds
rx
ecog.ps

1
59
1
72.3315
2
1
1

2
115
1
74.4932
2
1
1

3
156
1
66.4658
2
1
2

4
421
0
53.3644
2
2
1

5
431
1
50.3397
2
1
1

6
448
0
56.4301
1
1
2

7
464
1
56.9370
2
2
2

8
475
1
59.8548
2
2
2

9
477
0
64.1753
2
1
1

10
563
1
55.1781
1
2
2

11
638
1
56.7562
1
1
2

12
744
0
50.1096
1
2
1

13
769
0
59.6301
2
2
2

14
770
0
57.0521
2
2
1

15
803
0
39.2712
1
1
1

16
855
0
43.1233
1
1
2

17
1040
0
38.8932
2
1
2

18
1106
0
44.6000
1
1
1

19
1129
0
53.9068
1
2
1

20
1206
0
44.2055
2
2
1

21
1227
0
59.5890
1
2
2

22
268
1
74.5041
2
1
2

23
329
1
43.1370
2
1
1

24
353
1
63.2192
1
2
2

25
365
1
64.4247
2
2
1

26
377
0
58.3096
1
2
1

> fit <- coxph(Surv(futime, fustat) ~ age, data = ovarian)

> plot(survfit(fit, newdata=data.frame(age=60)),

+         xscale=365.25, xlab = "Years", ylab="Survival")

> # Outputting: Figure S6.4
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Figure S6.4 Output plot of: survfit(fit, newdata=data.frame(age=60)), xscale=365.25, xlab = "Years", ylab="Survival").
(a)
The result, as shown in Figure S6.4, is a typical, classical survival plot, using the Cox proportional hazards regression model, showing the survival rate as a function of time, for maintained and nonmaintained cases.

9.
Also, within the CRAN package survival, the following R code segment fits a K–M model (for time to progression/death for patients with monoclonal gammopathy), for the dataset mgus, then plots the model competing risk curves for cumulative incidence:

> fit1 <- survfit(Surv(stop, event=='progression') ~1,

+                      data=mgus, subset=(start==0))

> fit2 <- survfit(Surv(stop, status) ~1, data=mgus1,

+                      subset=(start==0), etype=event)

> # Competing Risks:
> # CI curves are plotted from 0 upwards, rather than from 1 downwards
> plot(fit2, fun='event', xscale=365.25, xmax=7300,

+         mark.time=FALSE,

+         col=2:3, xlab="Years post diagnosis of MGUS")

> lines(fit1, fun='event', xscale=365.25, xmax=7300,

+          mark.time=FALSE, conf.int=FALSE)

> text(10, .4, "Competing Risk: death", col=3)

> text(16, .15,"Competing Risk: progression", col=2)

> text(15, .30,"KM:prog")

(a)
What are the functions of the above R code segment used in analyzing the dataset mgus?
(b)
Run the above code segment in an R environment.

(c)
Describe the results.

ANSWER:

(a)
The R function survfit() is defined on the CRAN website as follows:

In the R environment:

>

> ?survfit(Surv())

> # Outputting:
>

survfit {survival}

R Documentation
Create survival curves

Description:
This function creates survival curves from either a formula (e.g., the K–M), a previously fitted Cox model, or a previously fitted accelerated failure time model.
Usage:
survfit(formula, ...)

Arguments:
formula
Either a formula or a previously fitted model.
...
Other arguments to the specific method.
Details:
A survival curve is based on a tabulation of the number at risk and number of events at each unique death time. When time is a floating point number, the definition of “unique” is subject to interpretation. The code uses factor() to define the set. For further details, see the documentation for the appropriate method, that is, ?survfit.formula or ?survfit.coxph.

Value:
An object of class survfit containing one or more survival curves.
Note:
Older releases of the code also allowed the specification for a single curve to omit the right hand of the formula, that is, ~ 1. Handling this case required some nonstandard and fairly fragile manipulations, and this case is no longer supported.
Author(s):
Terry Therneau

See also:
survfit.formula, survfit.coxph, survfit.object, print.survfit, plot.survfit, summary.survfit

In the R environment:

>

> install.packages("survival")

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)

--- Please select a CRAN mirror for use in this session ---

CRAN USA CA2 selected.

trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/survival_2.37-4.zip'

Content type 'application/zip' length 3033391 bytes (2.9 Mb)

opened URL

downloaded 2.9 Mb

package ‘survival’ successfully unpacked and MD5 sums

checked

The downloaded packages are in

C:\Users\bertchan\AppData\Local\Temp\RtmpSkodSW\

downloaded_packages

> library(survival)

Loading required package: splines

Warning message:

package ‘survival’ was built under R version 2.14.2

> ls("package:survival")

[1]
"aareg"
"aml"
"attrassign"

[4]
"basehaz"
"bladder"
"bladder1"

[7]
"bladder2"
"cancer"
"cch"

[10]
"cgd"
"clogit"
"cluster"

[13]
"colon"
"cox.zph"
"coxph"

[16]
"coxph.control"
"coxph.detail"
"coxph.fit"

[19]
"dsurvreg"
"format.Surv"
"frailty"

[22]
"frailty.gamma"
"frailty.gaussian"
"frailty.t"

[25]
"heart"
"is.na.coxph.penalty"
"is.na.ratetable"

[28]
"is.na.Surv"
"is.ratetable"
"is.Surv"

[31]
"jasa"
"jasa1"
"kidney"

[34]
"labels.survreg"
"leukemia"
"logan"

[37]
"lung"
"match.ratetable"
"mgus"

[40]
"mgus1"
"mgus2"
"nwtco"

[43]
"ovarian"
"pbc"
"pbcseq"

[46]
"pspline"
"psurvreg"
"pyears"

[49]
"qsurvreg"
"ratetable"
"ratetableDate"

[52]
"rats"
"rats2"
"ridge"

[55]
"stanford2"
"strata"
"Surv"

[58]
"survConcordance"
"survdiff"
"survexp"

[61]
"survexp.mn"
"survexp.us"
"survexp.usr"

[64]
"survfit"
"survfitcoxph.fit"
"survobrien"

[67]
"survreg"
"survreg.control"
"survreg.distributions"

[70]
"survreg.fit"
"survregDtest"
"survSplit"

[73]
"tcut"
"tobin"
"tt"

[76]
"untangle.specials"
"uspop2"
"veteran"

>

> data(mgus)

> attach(mgus)

> mgus # Outputting:

id
age
sex
dxyr
pcdx
pctime
futime
death
alb
creat
hgb
mspike

1
1
79
female
68
NA
760

1
2.8
1.2
11.5
2.0

2
2
76
female
69
LP
2160
5441
1
3.1
1.0
13.3
1.8

3
3
87
male
68
NA
277

1
2.2
1.1
11.2
1.3

4
4
80
male
69
NA
1815

1
2.8
1.3
15.3
1.8

5
5
74
female
68
NA
2587

1
3.0
0.8
9.8
1.4

6
6
81
male
68
NA
547

1
2.9
0.9
11.5

7
7
72
female
68
NA
1125

1
3.0
0.8
13.5
1.3

8
8
79
female
69
NA
2010

1
3.1
0.8
15.5
1.4

9
9
85
male
70
NA
2422

1
3.2
1.0
12.4
1.5
10
10
58
male
65
NA
6155

1
3.5
1.0
14.8
2.2

11
11
79
male
62
NA
1767

1
3.7
NA
10.6
2.1

12
12
78
male
68
NA
61

1
2.1
2.0
12.7
1.5

13
13
83
male
64
NA
60

1
2.7
NA
12.8
1.8

14
14
66
male
69
NA
7807

0
3.2
1.3
15.3
1.9
15
15
80
male
69
NA
7732

0
3.1
NA
14.5
1.8

16
16
61
female
66
AM
6126

1
3.4
0.8
12.2
1.9
17
17
53
female
68
MM
5231

1
3.0
1.1
11.1
2.0
18
18
74
male
67
NA
5384

1
3.2
1.0
13.5
1.5

19
19
72
female
69
MM
5934

1
3.1
1.2
14.3
1.8

20
20
59
female
70
AM
6789

1
3.5
0.8
14.6
1.3

21
21
72
male
59
MM
3561

1
2.8
1.4
12.5
1.7

22
22
62
female
67
MM
3987

1
2.8
0.9
12.3
1.7

23
23
69
male
69
NA
5550

1
3.0
1.0
15.3
1.7

24
24
78
female
70
NA
5216

1
3.0
0.8
12.7
1.3

25
25
69
female
69
NA
5757

1
3.1
0.9
14.9
1.8

26
26
75
male
70
NA
2345

1
3.7
0.9
14.6
2.3

27
27
70
female
65
NA
6931

1
3.5
0.8
11.3
2.7

28
28
62
female
69
NA
6760

1
3.0
1.1
14.3
2.1

29
29
74
female
70
NA
5796

1
4.0
0.9
13.6
1.8

30
30
80
female
66
MM
4810

1
3.3
0.7
11.7
1.5

31
31
63
male
69
MA
3091

1
3.6
1.2
14.8
1.5

32
32
73
female
73
MM
700

1
3.3
0.7
13.7
0.9

33
33
73
male
64
NA
5088

1
3.0
1.0
14.6
1.5

34
34
62
female
72
MM
944

1
3.8
0.7
12.8
1.7

35
35
59
male
68
NA
1706

1
3.4
0.9
11.8
1.6

36
36
64
female
70
NA
7364

0
3.7
NA
13.7
1.8

37
37
66
female
63
NA
1857

1
3.3
NA
12.5
3.2

38
38
62
female
63
MM
9510

1
3.8
0.8
12.5
1.9

39
39
76
male
69
NA
31

1
2.6
1.1
10.4
1.7

40
40
73
female
70
NA
7479

0
3.3
0.9
13.7
2.0

41
41
76
female
70
NA
2006

1
3.3
0.9
13.3
2.3

42
42
68
female
63
MM
2588

1
3.6
1.0
11.8
1.8

43
43
60
male
66
NA
8761

0
3.2
NA
13.7
1.8

44
44
70
male
69
NA
3932

1
2.6
1.1
10.7
1.7

45
45
68
male
67
MM
4201

1
3.5
1.2
12.8
1.4

46
46
66
male
65
NA
273

1
3.4
NA
12.4
1.8

47
47
81
male
67
NA
2223

1
2.2
0.6
12.6
1.1

48
48
61
female
67
NA
4249

1
3.7
1.7
11.7
1.8

49
49
80
female
70
NA
5308

1
3.5
0.8
14.3
1.7
50
50
78
female
65
NA
8327

1
3.3
0.8
12.2
2.0

51
51
66
female
66
NA
499

1
3.3
NA
10.2
1.7

52
52
77
male
70
NA
5789

1
3.5
1.6
13.5
1.5

53
53
46
female
70
NA
7417

0
4.3
0.8
13.7
1.6

54
54
59
female
65
LP
3242

1
NA
NA
NA
1.3

55
55
58
female
60
MM
10355

1
3.3
0.8
12.4
1.0

56
56
58
male
70
NA
362

1
3.6
1.0
14.9
2.4

57
57
54
male
63
NA
9993

0
3.6
1.2
13.6
1.2

58
58
65
male
66
MM
1795

1
3.2
1.0
15.0
2.0

59
59
73
male
60
MM
4139

1
3.3
1.3
13.7
1.1

60
60
68
male
70
NA
4959

1
3.2
1.0
13.3
1.6

61
61
77
male
70
NA
547

1
3.0
1.5
12.6
1.9

62
62
73
female
70
NA
4119

1
3.8
1.0
12.6
2.6

63
63
44
female
67
NA
8308

0
3.4
0.8
13.3
2.2

64
64
84
male
63
NA
1674

1
3.6
1.1
13.9
1.8

65
65
48
male
67
MM
2953

1
NA
NA
13.4
2.3

66
66
68
male
68
NA
1369

1
3.3
1.0
13.0
1.8

67
67
58
female
69
NA
7911

0
3.0
2.6
12.7
1.9

68
68
69
female
59
MM
7519

1
NA
1.1
15.3
2.0

69
69
67
female
70
NA
4370

1
3.2
0.9
15.0
0.5
70
70
61
male
70
NA
7301

0
2.9
0.9
15.7
1.3

71
71
52
female
66
MM
1642

1
3.2
0.7
11.0
2.1

72
72
48
male
70
NA
7417

0
3.7
0.7
15.7
1.8

73
73
71
male
70
NA
6117

1
3.9
NA
16.5
1.8

74
74
52
male
69
MM
4536

1
3.6
1.1
16.5
1.6

75
75
60
male
70
NA
6723

1
3.6
0.7
12.7
1.8

76
76
58
male
66
MM
7397

1
3.6
0.9
12.6
1.5

77
77
65
male
70
AM
2084

1
3.6
1.0
12.6
1.7

78
78
56
female
66
NA
1673

1
3.1
0.8
11.8
2.4

79
79
74
male
66
NA
2860

1
3.1
1.5
11.3
1.4

80
80
78
male
68
NA
0

1
2.5
1.5
13.6
2.2

81
81
58
male
68
MM
3773

1
2.1
0.9
6.8
1.2

82
82
76
female
68
NA
4206

1
3.2
1.2
11.0
2.1

83
83
50
male
65
MM
2314

1
3.5
NA
NA
1.6

84
84
50
female
66
NA
8961

0
3.4
0.8
14.6
1.3

85
85
77
male
64
NA
6143

1
3.1
1.2
12.2
1.3

86
86
70
female
70
NA
517

1
2.9
0.7
14.5
2.0

87
87
52
female
70
LP
3837

0
NA
0.8
13.9
1.9

88
88
78
female
70
NA
2815

1
3.9
1.0
14.9
1.8

89
89
43
male
60
NA
8806

1
3.2
NA
13.0
1.4
90
90
59
male
70
NA
7668

0
3.3
1.7
12.8
2.4

91
91
56
male
56
NA
12457

0
3.8
1.1
13.9
2.2

92
92
56
female
59
NA
8600

1
3.4
NA
13.0
2.0

93
93
65
male
70
NA
7003

0
3.9
1.0
15.3
1.7

94
94
58
male
67
NA
2435

1
3.5
1.0
15.4
1.1

95
95
61
male
69
MM
1826

1
2.9
1.2
14.3
2.2

96
96
65
male
64
MM
3805

1
3.7
NA
13.9
1.1

97
97
75
female
70
NA
365

1
2.7
0.9
12.4
1.4

98
98
61
male
62
NA
6642

1
3.2
0.9
14.6
2.2

99
99
63
male
64
NA
3318

1
3.2
1.1
15.3
1.8

100
100
78
male
68
NA
3012

1
3.0
1.2
11.9
1.4

101
101
34
male
62
MM
1431

1
3.7
1.1
13.8
1.7

102
102
46
male
58
NA
4962

1
2.3
NA
15.9
2.2

103
103
71
female
70
NA
638

1
3.1
6.4
11.2
1.5

104
104
60
female
65
MM
3346

1
2.8
0.7
12.6
1.7

105
105
53
female
70
LP
6800

0
3.4
1.2
13.9
1.2

106
106
60
male
66
NA
8887

0
3.7
1.1
13.7
2.4

107
107
63
male
70
NA
5024

1
3.3
0.9
13.1
1.5

108
108
63
male
70
NA
2833

1
3.4
1.0
13.4
1.7

109
109
53
female
69
MM
4232

1
3.4
1.0
14.8
1.5
110
110
87
male
70
NA
3186

1
2.7
0.9
13.5
1.8

111
111
50
female
59
AM
3380

1
3.3
1.1
12.6
1.9

112
112
53
male
68
NA
8100

0
3.5
1.0
13.6
1.1

113
113
58
male
59
NA
1766

1
2.6
NA
13.0
2.5

114
114
55
female
60
MA
7184

1
3.2
NA
13.0
2.0

115
115
58
female
67
NA
6008

1
3.0
1.0
10.7
2.7

116
116
68
male
60
NA
5047

1
3.8
NA
12.0
2.0

117
117
56
female
65
NA
2236

1
3.5
1.1
12.9
1.7

118
118
65
female
68
NA
8165

0
3.0
NA
11.8
1.8

119
119
70
female
61
NA
4224

1
2.5
NA
12.6
NA

120
120
80
male
69
NA
2844

1
2.3
NA
14.5
1.3

121
121
69
male
70
NA
6256

1
3.3
1.1
14.4
1.7

122
122
49
female
70
NA
7370

0
NA
0.9
12.4
2.0

123
123
60
female
62
NA
3560

1
2.8
0.6
8.4
1.6

124
124
69
male
62
AM
4939

1
2.4
NA
14.3
1.3

125
125
66
female
70
AM
2230

1
3.4
0.9
12.8
1.5

126
126
48
female
62
NA
152

1
3.6
NA
14.5
0.3

127
127
54
female
62
NA
1012

2
0
NA
13.2
1.8

128
128
65
male
68
NA
3226

1
3.0
0.9
13.6
2.0

129
129
72
female
69
NA
3943

1
3.0
1.5
14.5
1.2

130
130
85
male
64
NA
5181

2.4
NA
NA
12.5
1.6

131
131
65
female
67
NA
8569

0
2.6
1.1
12.9
1.9

132
132
68
male
69
NA
845

1
1.9
0.8
9.6
1.7

133
133
87
male
69
NA
2099

1
2.1
1.0
9.6
1.6

134
134
59
female
63
LP
8006

1
3.8
0.8
12.1
2.0

135
135
51
female
63
NA
9560

0
3.3
1.0
15.2
2.3

136
136
85
male
69
NA
0

1
3.0
1.0
10.8
1.2

137
137
34
female
69
NA
7965

0
3.5
1.0
15.5
1.6

138
138
71
male
70
NA
7470

0
3.4
0.9
14.2
1.7

139
139
35
female
68
NA
8133

0
3.5
0.9
12.7
1.6

140
140
55
male
64
NA
809

1
3.0
3.5
9.8
2.2

141
141
90
male
68
NA
153

1
2.7
NA
11.9
2.3

142
142
66
male
70
NA
1851

1
4.5
0.9
16.2
1.9

143
143
64
male
70
NA
3010

1
3.7
1.2
13.7
1.7

144
144
61
female
64
NA
2121

1
NA
1.7
10.5
2.0

145
145
50
female
65
NA
7085

1
1.8
1.3
8.4
2.5

146
146
52
female
65
NA
5068

1
2.5
0.6
12.6
2.1

147
147
74
female
70
NA
7093

0
2.6
1.0
14.5
1.5

148
148
72
female
67
NA
5930

1
3.2
1.1
14.8
2.4

149
149
47
female
65
NA
6878

1
3.1
1.4
11.4
1.7

150
150
71
male
68
NA
8080

0
3.1
1.2
13.3
1.8

151
151
77
male
69
NA
791

1
2.4
1.2
11.0
1.5

152
152
75
male
66
NA
6626

1
2.9
NA
10.8
2.0

153
153
73
male
66
NA
3962

1
2.7
NA
11.7
2.2

154
154
58
female
66
MM
1116

1
3.1
NA
11.3
1.7

155
155
59
male
64
NA
9257

0
NA
NA
12.9
2.5

156
156
63
male
66
NA
1077

1
3.0
NA
12.1
1.8

157
157
82
male
69
NA
566

1
2.3
3.6
12.5
2.9

158
158
64
male
66
NA
174

1
3.3
NA
11.1
1.7

159
159
64
female
69
MM
4627

1
2.9
1.0
13.2
2.6

160
160
65
male
67
MM
2070

1
3.5
NA
13.5
1.5

161
161
70
male
69
NA
1625

1
3.4
3.7
9.5
1.4

162
162
71
female
67
NA
6607

1
3.1
NA
11.7
2.3

163
163
36
male
67
NA
8381

0
3.7
0.9
11.4
2.4

164
164
41
female
67
NA
8389

0
3.5
NA
14.5
2.1

165
165
53
female
67
NA
1005

1
3.4
0.7
14.8
2.2

166
166
62
male
67
MM
3895

1
3.1
1.3
14.8
1.4

167
167
55
female
67
MM
6970

0
3.1
0.8
12.4
1.8

168
168
51
male
67
MA
2861

0
3.1
1.1
13.6
2.3

169
169
50
male
68
NA
3227

1
3.2
NA
15.0
1.5
170
170
49
female
68
NA
8030

0
3.0
0.9
12.7
1.7

171
171
62
male
68
NA
8023

0
3.1
1.1
13.7
1.8

172
172
66
male
68
NA
31

1
3.2
1.1
13.2
1.7

173
173
80
male
68
NA
2435

1
3.2
NA
14.9
1.7

174
174
68
female
68
NA
518

1
2.8
0.9
13.4
1.7

175
175
75
male
68
NA
4758

1
2.8
0.9
10.8
1.8

176
176
54
female
68
NA
7958

0
3.3
0.9
12.6
1.6

177
177
47
female
68
NA
7884

0
3.0
1.0
13.1
1.7

178
178
70
female
68
NA
4453

1
3.2
0.8
7.7
2.2

179
179
47
female
68
NA
6349

1
2.4
0.7
12.1
1.7

180
180
50
female
68
NA
7862

0
2.7
0.9
12.4
1.7

181
181
74
male
68
NA
1392

1
3.3
1.1
14.1
1.6

182
182
81
male
68
NA
3167

1
2.9
1.2
12.2
1.4

183
183
60
female
68
NA
6025

1
3.3
1.2
11.1
1.2

184
184
72
male
68
NA
4656

1
3.0
1.0
14.0
1.1

185
185
64
male
67
NA
1767

1
NA
NA
13.2
1.8

186
186
38
male
68
NA
7736

0
3.9
1.1
13.3
2.2

187
187
56
male
68
NA
2678

1
2.8
0.9
12.7
1.6

188
188
63
male
69
MM
2191

1
3.1
1.1
14.7
2.0

189
189
37
female
69
NA
7758

0
2.6
1.0
10.1
1.2

190
190
44
male
69
NA
8009

0
3.6
1.1
14.5
1.5

191
191
60
male
69
AM
2556

1
2.9
0.9
14.0
1.6

192
192
48
male
69
NA
7954

0
3.2
1.0
16.2
1.5

193
193
56
male
67
NA
822

1
NA
1.0
11.3
1.6

194
194
50
male
68
MM
4321

1
5.1
1.3
14.5
1.4

195
195
70
female
69
MM
7545

1
2.2
0.8
12.4
1.0

196
196
57
male
69
NA
32

1
2.6
2.5
11.2
2.6

197
197
55
male
69
NA
7875

0
3.0
0.9
13.4
1.1

198
198
58
male
69
MM
5236

1
2.9
1.3
13.1
1.7

199
199
54
male
69
MM
2802

0
2.9
1.0
13.6
1.3

200
200
74
female
69
NA
3014

1
3.3
0.9
12.9
1.3

201
201
62
female
69
NA
7867

0
3.1
0.8
14.5
2.1

202
202
61
male
69
NA
5354

1
3.2
0.9
13.8
2.0

203
203
55
male
69
NA
2989

1
2.8
1.2
15.0
1.9

204
204
52
female
69
NA
7555

0
3.2
0.7
14.9
1.4

205
205
46
male
69
NA
6089

1
3.1
0.9
13.0
1.4

206
206
68
male
67
NA
8697

1
NA
1.0
14.2
1.5

207
207
59
male
69
NA
6479

1
3.5
1.1
14.9
1.2

208
208
68
male
70
NA
1826

1
2.1
1.1
15.9
2.4

209
209
47
female
70
NA
5917

1
2.7
0.7
11.6
2.4
210
210
62
male
70
NA
792

1
3.8
1.2
13.9
2.0

211
211
79
male
69
MA
1431

1
NA
1.1
12.8
1.9

212
212
64
male
70
NA
4763

1
3.9
0.9
15.5
2.6

213
213
77
female
70
NA
2910

1
3.9
0.8
12.8
1.4

214
214
76
male
70
NA
6209

1
3.6
0.9
13.7
2.6

215
215
64
female
70
NA
5824

1
3.6
1.2
12.6
1.5

216
216
70
male
70
NA
2400

1
2.9
1.2
7.4
1.4

217
217
51
female
70
MM
1400

1
3.1
0.9
12.8
1.4

218
218
57
female
70
NA
7198

0
3.7
0.8
15.1
1.4

219
219
49
male
70
NA
7247

0
NA
1.3
15.1
1.4
220
220
58
male
70
MM
2557

1
3.7
1.0
14.9
2.2

221
221
75
female
70
NA
61

1
2.7
1.3
12.2
1.9

222
222
53
male
70
NA
7410

0
3.4
1.0
13.0
2.2

223
223
82
female
69
NA
1492

1
NA
0.9
14.1
1.5

224
224
54
male
70
NA
7160

0
3.3
1.0
13.1
1.2

225
225
54
male
68
NA
7899

1
NA
1.0
14.2
1.9

226
226
72
male
70
NA
5181

1
3.9
1.0
15.4
1.3

227
227
39
male
70
NA
7280

0
3.8
NA
16.6
1.6

228
228
75
male
70
NA
3448

1
3.3
1.5
15.9
1.7

229
229
64
male
70
NA
7381

0
4.0
0.9
16.1
1.8
230
230
66
male
70
NA
2434

1
3.9
1.4
15.1
1.9

231
231
67
male
70
NA
6763

1
3.4
1.0
14.5
2.5

232
232
61
male
70
NA
7065

0
3.4
1.1
15.0
1.6

233
233
62
male
71
MM
1218

1
3.9
0.9
15.1
1.7

234
234
47
female
69
NA
7533

0
3.4
0.7
11.8
2.2

235
235
51
female
70
NA
7288

0
NA
0.6
13.6
1.4

236
236
66
male
67
MM
2922

1
4.1
NA
13.8
2.4

237
237
62
male
68
MA
2495

1
NA
1.3
12.1
2.1

238
238
38
male
64
NA
9598

0
3.8
1.4
14.0
2.6

239
239
39
male
69
AM
2953

1
NA
1.2
15.2
1.2

240
240
67
female
69
NA
4539

1
3.5
1.3
12.2
2.2

241
241
55
male
66
MA
3775

1
3.2
1.3
14.2
1.3

>

> fit1 <- survfit(Surv(stop, event=='progression') ~1,

+                      data=mgus1, subset=(start==0))

> fit2 <- survfit(Surv(stop, status) ~1,

+                      data=mgus,subset=(start==0), etype=event)

> # Competing Risks:
> # CI curves are plotted from 0 upwards, rather than from 1 downwards
>

> plot(fit2, fun='event', xscale=365.25, xmax=7300,

+        mark.time=FALSE,

+       col=2:3, xlab="Years post diagnosis of MGUS")

> # Outputting: Figure S6.5.1
>

> lines(fit1, fun='event', xscale=365.25, xmax=7300,

+          mark.time=FALSE, conf.int=FALSE)

> # Outputting: Figure S6.5.2
> text(10, .4, "Competing Risk: death", col=3)

> # Outputting: Figure S6.5.3
>

> text(16, .15,"Competing Risk: progression", col=2)

> # Outputting: Figure S6.5.4
>

> text(15, .30,"KM:prog")

> # Outputting: Figure S6.5.5
>
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10.
The CRAN package survrec
A migrating myoelectric complex [or migrating motor complex (MMC)] is a wave of bioelectric activity that sweeps through the intestines in a regular cycle during fasting. These complexes help trigger peristaltic waves, which facilitate movement of indigestible substances (fiber and foreign bodies) from the stomach, through the small intestine, past the ileocecal sphincter, and into the colon. The MMC originates in the stomach roughly every 80 minutes between meals and is responsible for the stomach rumbling experienced when hungry. The MMC lasts for approximately 15 minutes. It also serves to transport bacteria from the small intestine to the large intestine, and to inhibit the migration of colonic bacteria into the terminal ileum. The MMC may be partially regulated by motilin; it is initiated in the stomach as a response to vagal stimulation and does not directly depend on extrinsic nerves.

In the CRAN package survrec, the function mlefrailty.fit() is a survival function estimator for correlated recurrence time data under a gamma frailty model using the maximum likelihood criterion. The resulting object of class survfitr may be plotted by the function plot.survfitr() before it is returned. The usage form of this function mlefrailty.fit() is:

mlefrailty.fit(x,tvals, lambda=NULL, alpha=NULL, alpha.min,

alpha.max, tol=1e-07, maxiter=500,alpha.console=TRUE)

for which the arguments are:

x
A survival recurrent event object.

tvals
Vector of times where the survival function can be estimated.

lambda
Optional vector of baseline hazard probabilities at t (see details). Default is numdeaths/apply(AtRisk,2,sum).

alpha
Optional parameter of shape and scale for the frailty distribution. If this parameter is unknown, it is estimated via an EM algorithm. In order to obtain the convergence of this algorithm, a seed is calculated (see details).

alpha.min
Optional left bound of the alpha parameter; used to obtain a seed to estimate the alpha parameter. Default value is 0.5.

alpha.max
Optional right bound of the alpha parameter; used to obtain a seed to estimate the alpha parameter. Default value is the maximum of distinct times of events.

tol
Optional tolerance of the EM algorithm used to estimate the alpha parameter. Default is 10e–7

maxiter
Optional maximum number of iterations of the EM algorithm used to estimate the alpha parameter. Default is 500.

alpha.console
If TRUE prints in the console, the program estimates the initial value for alpha and the alpha estimate via the EM algorithm; if FALSE, it does not.

Remarks:

1.
A common choice of frailty distribution is a gamma distribution with shape and scale parameters set equal to an unknown parameter α. The common marginal survival function may be expressed as


F(t) = [α/(α + Λ0(t))]α
(6.1)

The parameter α controls the degree of association between interoccurrence times within a unit. It may be shown that the estimation of α and Λ0 can be obtained via the maximization of the marginal likelihood function and the EM algorithm.
To obtain a good convergence, first α is estimated. This estimation is used as an initial value in the EM procedure, and it is carried out by the maximization of the profile likelihood for α. In this case, the arguments of the function mlefrailty.fit() called alpha.min and alpha.max are the boundaries of this maximization. The maximum is obtained using the golden section search method.

2.
Value: If the convergence of the EM algorithm is not obtained, the initial value of α can be used as an alpha.min argument and recalculated.

n
Number of units or subjects observed.

m
Vector of number of recurrences in each subject (length n).

failed
Vector of number of recurrences in each subject (length n*m). Vector ordered (e.g., times of first unit, times of second unit, ..., times of n-unit).

censored
Vector of times of censorship for each subject (length n).

numdistinct
Number of distinct failure times.

distinct
Vector of distinct failure times.

status
0 if the estimation is can be provided; 1 if not, depending on whether alpha could be estimated.

alpha
Parameter of gamma frailty model.

lambda
Estimates of the hazard probabilities at distinct failure times.

survfunc
Vector of survival estimated in distinct times.

tvals
Copy of argument.

MLEAttvals
Vector of survival estimated in tvals times.

The following R code segment may be used to compute a cohort study based on the available dataset:

> install.packages("survrec")

> library(survrec)

Loading required package: boot

Attaching package: ‘boot’

The following object(s) are masked from ‘package:lattice’:

melanoma

The following object(s) are masked from ‘package:survival’:

aml

> ls("package:survrec")

[1]
"is.Survr"
"mlefrailty.fit"
"psh.fit"
"q.search"

[5]
"surv.search"
"survdiffr"
"survfitr"
"Survr"

[9]
"wc.fit"

> data(MMC)

> attach(MMC)

The following object(s) are masked from 'colon':

 id, time

The following object(s) are masked from 'bladder (position 15)':

event, id

The following object(s) are masked from 'bladder (position 16)':

event, id

The following object(s) are masked from 'lung':

time

> MMC # Displaying data of 99 case subjects.

id
time
event
group

1
1
112
1
Males

2
1
145
1
Males

3
1
39
1
Males

--------------------------------------------------------
--------------------------------------------------------
97
19
66
1
Females

98
19
100
1
Females

99
19
4
0
Females

>

> fit <- mlefrailty.fit(Survr(MMC$id,MMC$time,MMC$event))

Needs to Determine a Seed Value for Alpha

Seed Alpha: 20.02853

Alpha estimate= 10.17623

> fit

> plot(fit)

(a)
What are the functions of the above R code segment used in analyzing the dataset MMC?

(b)
Run the above code segment in an R environment.

(c)
Describe the results.

ANSWER:
(a)
(Taken from the CRAN website)

plot.survfit {survival}

R Documentation

Plot method for survfit objects
Description:
A plot of survival curves is produced, one curve for each strata. The log=T option does extra work to avoid log(0), and to try to create a pleasing result. If there are zeros, they are plotted by default at 0.8 times the smallest nonzero value on the curve(s).
Usage:
## S3 method for class 'survfit'

plot(x, conf.int=, mark.time=TRUE,
mark=3, col=1, lty=1, lwd=1, cex=1, log=FALSE, xscale=1, yscale=1, 
firstx=0, firsty=1, xmax, ymin=0, fun,
xlab="", ylab="", xaxs="S", ...)

Arguments:
x
An object of class survfit, usually returned by the survfit function.
conf.int
Determines whether confidence intervals will be plotted. The default is to do so if there is only one curve, that is, no strata.
mark.time
Controls the labeling of the curves. If set to FALSE, no labeling is done. If TRUE, then curves are marked at each censoring time that is not also a death time. If mark.time is a numeric vector, then curves are marked at the specified time points.
mark
Vector of mark parameters, which will be used to label the curves. The lines help file contains examples of the possible marks. The vector is reused cyclically if it is shorter than the number of curves.
col
A vector of integers specifying colors for each curve. The default value is 1.
lty
A vector of integers specifying line types for each curve. The default value is 1.
lwd
A vector of numeric values for line widths. The default value is 1.
cex
A numeric value specifying the size of the marks. This is not treated as a vector; all marks have the same size.
log
A logical value; if TRUE the y-axis will be on a log scale. Alternately, one of the standard character strings "x", "y", or "xy" can be given to specific logarithmic horizontal and/or vertical axes.
yscale
A numeric value used to multiply the labels on the y-axis. A value of 100, for instance, would be used to give a percent scale. Only the labels are changed, not the actual plot coordinates so that adding a curve with "lines(surv.exp(...))", say, will perform as it did without the yscale argument.
xscale
A numeric value used like yscale for labels on the x-axis. A value of 365.25 will give labels in years instead of the original days.
firstx, firsty
The starting point for the survival curves. If either of these is set to NA, the plot will start at the first time point of the curve. By default, the plot program obeys tradition by having the plot start at (0,0). If start.time argument is used in survfit, firstx is set to that value.
xmax
The maximum horizontal plot coordinate. This can be used to shrink the range of a plot. It shortens the curve before plotting it so that unlike using the xlim graphical parameter, warning messages about out of bounds points are not generated.
ymin
Lower boundary for y values. Survival curves are most often drawn in the range of 0–1, even if none of the curves approach zero. The parameter is ignored if the fun argument is present, or if it has been set to NA.
fun
An arbitrary function defining a transformation of the survival curve. For example fun=log is an alternative way to draw a log-survival curve (but with the axis labeled with log(S) values), and fun=sqrt would generate a curve on square root scale. Four often used transformations can be specified with a character argument instead: "log" is the same as using the log=T option, "event" plots cumulative events (f(y) = 1-y), "cumhaz" plots the cumulative hazard function (f(y) = -log(y)), and "cloglog" creates a complimentary log–log survival plot (f(y) = log(-log(y)) along with log scale for the x-axis).
xlab
Label given to the x-axis.
ylab
Label given to the y-axis.
xaxs
Either "S" for a survival curve or a standard x-axis style as listed in par. Survival curves are usually displayed with the curve touching the y-axis, but not touching the bounding box of the plot on the other three sides. Type "S" accomplishes this by manipulating the plot range and then using the "i" style internally.
...
For future methods.
Details:
When the survfit function creates a multi-state survival curve, the resulting object also has class “survfitms”. The only difference in the plots is that that it defaults to a curve that goes from lower left to upper right (starting at 0), where survival curves default to starting at 1 and going down. All other options are identical.

Value:
A list with components x and y, containing the coordinates of the last point on each of the curves (but not the confidence limits). This may be useful for labeling.
See also:
par, survfit, lines.survfit.
(b)
In the R environment:

>
> install.packages("survrec")

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)

trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/survrec_1.2-2.zip'

Content type 'application/zip' length 103041 bytes (100 Kb)

opened URL

downloaded 100 Kb

package ‘survrec’ successfully unpacked and MD5 sums checked

The downloaded packages are in

C:\Users\bertchan\AppData\Local\Temp\RtmpSkodSW\downloaded_
packages

> library(survrec)

Loading required package: boot

Attaching package: ‘boot’

The following object(s) are masked from ‘package:survival’:

aml

Warning message:

package ‘survrec’ was built under R version 2.14.2
> ls("package:survrec")

[1]
"is.Survr"
"mlefrailty.fit"
"psh.fit"
"q.search"
[5]
"surv.search"
"survdiffr"
"survfitr"
"Survr"
[9]
"wc.fit"
> data(MMC)

> attach(MMC)

The following object(s) are masked from 'mgus':

 id

The following object(s) are masked from 'aml':

time

> MMC


id
time
event
group

1
1
112
1
Males

2
1
145
1
Males

3
1
39
1
Males

4
1
52
1
Males

5
1
21
1
Males

6
1
34
1
Males

7
1
33
1
Males

8
1
51
1
Males

9
1
54
0
Males

10
2
206
1
Males

11
2
147
1
Males

12
2
30
0
Males

13
3
284
1
Males

14
3
59
1
Males

15
3
186
1
Males

16
3
4
0
Males

17
4
94
1
Males

18
4
98
1
Males

19
4
84
1
Males

20
4
87
0
Males

21
5
67
1
Males

22
5
131
0
Males

23
6
124
1
Males

24
6
34
1
Males

25
6
87
1
Males

26
6
75
1
Males

27
6
43
1
Males

28
6
38
1
Males

29
6
58
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> fit <- mlefrailty.fit(Survr(MMC$id,MMC$time,MMC$event))

Needs to Determine a Seed Value for Alpha

Seed Alpha:  20.02853

Alpha estimate= 10.17623

> fit

Survival for recurrent event data


n events
mean
se(mean)
median recurrences:
min
max
median

19
80
108
6.7
100
1
9
4

> plot(fit)

> # Outputting: Figure 6.6
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Figure 6.6 mlefrailty.fit(Survr(…)) plot of survivor probability estimates vs. time.
(c)
The resulting mlefrailty.fit(Survr(…)) plot of survivor probability estimates vs. time, in Figure 6.6, shows an approximate exponentially decaying curve (towards zero probability as time increases). This is a typical representation of a survival probability curve.
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Randomized Trials, Phase Development, Confounding in Survival Analysis, and Logistic Regressions
Learning Objectives

____________________________

Within the R environment
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To understand the concept of randomized trials and phase development, confounding in survival analysis, and logistic regressions
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To understand and apply randomized trials in epidemiologic studies
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To understand and apply phase development in epidemiologic studies
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To understand and apply survival analysis with confounding in epidemiologic investigations
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To understand and apply logistic regression analysis in epidemiologic studies
Exercises for Section 7.1

____________________________

1.
For each of the five worked examples (Examples 7.1 through 7.5)::

(a)
Explain the function of each line of the R code segment for the computation in each example.

(b)
For each example, rerun each of the code segments in the R environment.
ANSWER:

(If necessary, refer to the CRAN website for definitions of terminologies.)

2.
In the CRAN package CRTSize, the function n4means() may be used to provide sample size estimation information. For instance, it can compute the number of case subjects needed for a cluster randomized trial with continuous outcome. The following R code segment is used where the outcome is continuous (e.g., blood pressure or weight). Note that if the results suggest a small number of clusters is required, an iterative procedure will include the t distribution instead of the normal critical value for alpha, iterating until convergence. For this function n4means(), the following specification applies:

Description:
This function provides detailed sample-size estimation information to determine the number of subjects that must be enrolled in a cluster randomized trial to compare two means.

Usage:
n4means(delta, sigma, m, ICC, alpha=0.05, power=0.8, AR=1, two.tailed=TRUE, digits=3)

Arguments:
delta
The minimum detectable difference between population means.

sigma
The standard error of the outcome.

m
The anticipated average (or actual) cluster size.

ICC
The anticipated value of the intraclass correlation coefficient, ρ.

AR
The allocation ratio: AR=1 implies an equal number of subjects per treatment and control group (maximum efficiency), AR > 1, implies more subjects will be enrolled in the control group (e.g., in the case of costly intervention), AR < 1 implies more subjects in the treatment group (rarely used).

alpha
The desired Type I error rate.

power
The desired level of power, recall power = 1 – Type II error.

two.tailed
Logical, if TRUE calculations are based on a two-tailed Type I error; if FALSE, a one-sided calculation is performed.

digits
Number of digits to round calculations.

Value:
nE
The minimum number of subjects required in the experimental group.

nC
The minimum number of subjects required in the control group.

delta
The minimum detectable difference between population means.

sigma
The standard error of the outcome.

alpha
The desired Type I error rate.

power
The desired level of power, recall power = 1 – Type II error.

AR
The allocation ratio.

The following R code segment is available to undertake the computation:

> install.packages("CRTSize")

> library(CRTSize)

> ls("package:CRTSize")

[1]
"fixedMetaAnalMD"
"fixedMetaAnalRROR"
[3]
"n4incidence"
"n4means"
[5]
"n4meansEB"
"n4meansMeta"
[7]
"n4props"
"n4propsEB"
[9]
"n4propsMeta"
"print.fixedMetaAnalMD"
[11]
"print.fixedMetaAnalRROR"
"print.n4incidence"
[13]
"print.n4means"
"print.n4meansEB"
[15]
"print.n4meansMeta"
"print.n4props"
[17]
"print.n4propsEB"
"print.n4propsMeta"
[19]
"summary.fixedMetaAnalMD"
"summary.fixedMetaAnalRROR"

[21]
"summary.n4incidence"
"summary.n4means"
[23]
"summary.n4meansEB"
"summary.n4meansMeta"
[25]
"summary.n4props"
"summary.n4propsEB"
[27]
"summary.n4propsMeta"
> n4means(delta=10, sigma=1, m=25, ICC=0.05,
+                  alpha=0.05, power=0.80);

> # Outputting:
The required sample size is a minimum of 1 cluster of size 25 in the Experimental Group and a minimum of 1 clusters (size 25) in the Control Group.
(a)
Explain the function of each line of the R code segment for this computation.

(If necessary, refer to the CRAN website for definitions of terminologies.)

(b)
Rerun the above code segment in the R environment.

(An exercise for each student.)

(c)
Recalculate the estimation of cluster sizes for a biostatistical power of 0.90. Comment on the results.

ANSWER:

In the R environment:

>
> install.packages("CRTSize")

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)

trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/CRTSize_0.2.zip'

Content type 'application/zip' length 68508 bytes (66 Kb)

opened URL

downloaded 66 Kb

package ‘CRTSize’ successfully unpacked and MD5 sums checked

The downloaded packages are in C:\Users\bertchan\AppData\Local\Temp\RtmpSkodSW\downloaded_packages

> library(CRTSize)

Warning message:

package ‘CRTSize’ was built under R version 2.14.2
> ls("package:CRTSize")

[1]
"fixedMetaAnalMD"
"fixedMetaAnalRROR"
[3]
"n4incidence"
"n4means"
[5]
"n4meansEB"
"n4meansMeta"
[7]
"n4props"
"n4propsEB"
[9]
"n4propsMeta"
"print.fixedMetaAnalMD"
[11]
"print.fixedMetaAnalRROR"
"print.n4incidence"
[13]
"print.n4means"
"print.n4meansEB"
[15]
"print.n4meansMeta"
"print.n4props"
[17]
"print.n4propsEB"
"print.n4propsMeta"
[19]
"summary.fixedMetaAnalMD"
"summary.fixedMetaAnalRROR"

[21]
"summary.n4incidence"
"summary.n4means"
[23]
"summary.n4meansEB"
"summary.n4meansMeta"
[25]
"summary.n4props"
"summary.n4propsEB"
[27]
"summary.n4propsMeta"
> n4means(delta=10, sigma=1, m=25, ICC=0.05,
+                  alpha=0.05, power=0.90)

The required sample size is a minimum of 1 clusters of size 25 in the Experimental Group and a minimum of 1 clusters (size 25) in the Control Group.
> n4means(delta=10, sigma=1, m=25, ICC=0.05,
+                  alpha=0.05, power=0.95)

The required sample size is a minimum of 1 clusters of size 25 in the Experimental Group and a minimum of 1 clusters (size 25) in the Control Group.
> n4means(delta=10, sigma=1, m=25, ICC=0.05,

+                  alpha=0.05, power=0.99)

The required sample size is a minimum of 1 clusters of size 25 in the Experimental Group and a minimum of 1 clusters (size 25) in the Control Group.
> n4means(delta=10, sigma=1, m=25, ICC=0.05,

+                  alpha=0.05, power=0.99999)

The required sample size is a minimum of 1 clusters of size 25 in the Experimental Group and a minimum of 1 clusters (size 25) in the Control Group.
> n4means(delta=10, sigma=1, m=25, ICC=0.05,

+                  alpha=0.05, power=1.0)

Error in n4means(delta = 10, sigma = 1, m = 25, ICC = 0.05, alpha = 0.05,  : Sorry, the alpha and power must lie within (0,1)

> n4means(delta=10, sigma=1, m=25, ICC=0.05,

+               alpha=0.05, power=0.999999999999999)

The required sample size is a minimum of 1 cluster of size 25 in the Experimental Group and a minimum of 1 clusters (size 25) in the Control Group.
>

It appears that a minimum of one cluster of size 25 in the experimental group is adequate.
3.
The CRAN package randomSurvivalForest describes random survival forests for right-censored and competing risks survival data. The outputs of the function plot.ensemble() in this package are ensemble survival curves and ensemble estimates of mortality. This approach is applicable to competing risk analyses, but the plots are nonevent specific. For event-specific curves and for a more comprehensive analysis, use competing.risk in such cases.
References:

Gerds, T. A., Cai, T., & Schumacher, M. (2008). The performance of risk prediction models. Biometrical Journal, 4, 457–479.

Graf, E., Schmoor, C., Sauerbrei, W. & Schumacher, M. (1999). Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine, 18, 2529–2545.

The following R code segment is available to undertake the computation, using the dataset veteran in the CRAN package survival:
> install.packages("randomSurvivalForest")

> library(randomSurvivalForest)

randomSurvivalForest 3.6.3

Type rsf.news() to see new features, changes, and bug fixes.

> ls(package:randomSurvivalForest) # Listing the contents:
[1]
"competing.risk"
"find.interaction"
"impute.rsf"
[4]
"max.subtree"
"plot.ensemble"
"plot.error"
[7]
"plot.proximity"
"plot.rsf"
"plot.variable"
[10]
"pmml2rsf"
"predict.rsf"
"print.rsf"
[13]
"randomSurvivalForest"
"rsf"
"rsf.news"
[16]
"rsf2pmml"
"rsf2rfz"
"varSel"
[19]
"vimp"
Warning message:

In ls(package:randomSurvivalForest) :

‘package:randomSurvivalForest’ converted to character string

> install.packages("survival")

> library(survival)

Loading required package: splines

> ls("package:survival") # Listing the contents:
[1]
"aareg"
"aml"
"attrassign"
[4]
"basehaz"
"bladder"
"bladder1"
[7]
"bladder2"
"cancer"
"cch"
[10]
"cgd"
"clogit"
"cluster"
[13]
"colon"
"cox.zph"
"coxph"
[16]
"coxph.control"
"coxph.detail"
"coxph.fit"
[19]
"dsurvreg"
"format.Surv"
"frailty"
[22]
"frailty.gamma"
"frailty.gaussian"
"frailty.t"
[25]
"heart"
"is.na.coxph.penalty"
"is.na.ratetable"
[28]
"is.na.Surv"
"is.ratetable"
"is.Surv"
[31]
"jasa"
"jasa1"
"kidney"
[34]
"labels.survreg"
"leukemia"
"logan"
[37]
"lung"
"match.ratetable"
"mgus"
[40]
"mgus1"
"mgus2"
"nwtco"
[43]
"ovarian"
"pbc"
"pbcseq"
[46]
"pspline"
"psurvreg"
"pyears"
[49]
"qsurvreg"
"ratetable"
"ratetableDate"
[52]
"rats"
"ridge"
"stanford2"
[55]
"strata"
"Surv"
"survConcordance"
[58]
"survdiff"
"survexp"
"survexp.mn"
[61]
"survexp.us"
"survexp.usr"
"survfit"
[64]
"survfitcoxph.fit"
"survobrien"
"survreg"
[67]
"survreg.control"
"survreg.distributions"
"survreg.fit"
[70]
"survregDtest"
"survSplit"
"tcut"
[73]
"tobin"
"tt"
"untangle.specials"
[76]
"veteran"
> data(veteran, package = "randomSurvivalForest")

> v.out <- rsf(Surv(time, status) ~ ., veteran, ntree = 1000)

> data(veteran, package = "randomSurvivalForest")

> v.out <- rsf(Surv(time, status) ~ ., veteran, ntree = 1000)

> plot.ensemble(v.out)
> # Outputting: Figure 7.6: randomSurvivalForest
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Figure 7.6 randomSurvivalForest-1.

Four plots are produced (from top to bottom, left to right):

(i)
Ensemble survival function for each individual: the thick red line is the overall ensemble survival; the thick green line is the Nelson–Aalen estimator.
(ii)
Comparison of the population ensemble survival function to the Nelson–Aalen estimator.
(iii)
Brier score (0=perfect, 1=poor, and 0.25=guessing) stratified by ensemble mortality. Based on the method described in Gerds, Cai, and Schumacher (2008) in which the censoring distribution is estimated using the Kaplan–Meier (K–M) estimator. Stratification is into four groups corresponding to the 0–25, 25–50, 50–75 and 75–100 percentile values of mortality. The red line is the overall (nonstratified) Brier score.
(iv)
Plot of mortality versus observed time. Points in blue correspond to events; black points are censored observations.

> plot(v.out) # Outputting: Figure 7.7: randomSurvivalForest-2
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Figure 7.7 randomSurvivalForest-2.
> # plot of ensemble survival for a single individual

> surv.ensb <- t(exp(-v.out$oob.ensemble))

> plot(v.out$timeInterest, surv.ensb[, 1])

> #Outputting: Figure 7.8: randomSurvivalForest-3

>
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Figure 7.8 randomSurvivalForest-3: Plot of ensemble survival for a single individual

(a)
Explain the function of each line of the R code segment for this computation.

(If necessary, refer to the CRAN website for definitions of terminologies.)

(b)
Rerun the above code segment in the R environment.

(The foregoing results may be readily obtained.)

(c)
Recalculate the estimation of cluster sizes for another dataset from the CRAN package survival. Comment on the results.

(This is left as a practice exercise.)

4.
To obtain the survival effects of variables, the R function plot.variable(), in the CRAN package randomSurvivalForest (rSF), may be used to create plots of ensemble mortality, predicted survival, or predicted survival time against a given x-variable. Also marginal and partial plots may be created. Either mortality, relative frequency of mortality, predicted survival, or predicted survival times are plotted on the vertical axis (y-value) against x-variables on the horizontal axis.
The choice of x-variables can be specified using predictor names. The choice of y-value is controlled by type.

There are four different choices:
(i)
"mort" is ensemble mortality
(ii)
"rel.freq" is standardized mortality

(iii)
"surv" is predicted survival at a given time point

(iv)
"time" is the predicted survival time

For continuous variables, points colored blue correspond to events and black to censored observations. Ensemble mortality should be interpreted in terms of total number of deaths. For example, if i has a mortality value of 100, then if all individuals were the same as i, the expected number of deaths would be 100. If type="rel.freq", then mortality values are divided by an adjusted sample size, defined as the maximum of the sample size and the maximum mortality value. Standardized mortality values do not indicate total deaths, but rather relative mortality.

Partial plots are created when partial=TRUE. Interpretation for these are different from marginal plots. The partial value for a variable X, evaluated at X = x, is
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where f is the predicted value and for each individual i, xi,o represents the value for all other variables other than X. For continuous variables, red points are used to indicate partial values and dashed red lines represent an error bar of ±2 standard errors. A black dashed line indicates the lowess estimate of the partial values. For discrete variables, partial values are indicated using boxplots with whiskers extending out approximately two standard errors from the mean. Standard errors are provided only as a guide and should be interpreted with caution.

Partial plots can be slow. Setting type="time" can improve matters. Setting npts to a smaller number should also be tried.

For competing risk analyses, plots correspond to unconditional values (i.e., they are nonevent specific). Use competing risk for event-specific curves and for a more comprehensive analysis in such cases.
The usage formula for this function is:

plot.variable(x, plots.per.page = 4, granule = 5, sorted = TRUE,

                       type = c("mort", "rel.freq", "surv", "time")[1],

                       partial = FALSE, predictorNames = NULL,
                       npred = NULL, npts = 25, subset = NULL,
                       percentile = 50, ...)

in which the arguments are

x
An object of class (rsf, grow) or (rsf, predict).

plots.per.page
Integer value controlling page layout.

granule
Integer value controlling whether a plot for a specific variable should be given as a boxplot or scatter plot. Larger values coerce boxplots.

sorted
Should variables be sorted by importance values (only applies if importance values are available)?

type
Select type of value to be plotted on the vertical axis.
partial
Should partial plots be created?

predictorNames
Character vector of x-variables to be plotted. Default is all.

npred
Number of variables to be plotted. Default is all.

npts
Maximum number of points used when generating partial plots for continuous variables.

subset
Indices indicating which rows of the predictor matrix is to be used (Note: This applies to the processed predictor matrix, predictors of the object). Default is to use all rows.

percentile
Percentile of follow up time used for plotting predicted survival. Further arguments passed to or from other methods.

The following R code segment is available to undertake the computation, using the dataset veteran in the CRAN package survival:

>

> install.packages("randomSurvivalForest")

> library(randomSurvivalForest)

> ls(package:randomSurvivalForest)
>

> install.packages("survival")

> library(survival)

> ls("package:survival")
>

> # Some examples applied to veteran data.
> data(veteran, package = "randomSurvivalForest")

> v.out <- rsf(Surv(time,status) ~ ., veteran, nsplit = 10,
+                    ntree = 1000)

>

> plot.variable(v.out, plots.per.page = 3)
Warning message:

In bxp(list(stats = c(28.3583161744737, 56.5401467687752, 78.2666123470398,  :

some notches went outside hinges ('box'): maybe set notch=FALSE

> # Outputting: Figure 7.9: rSF-1
>

> plot.variable(v.out, plots.per.page = 2,

+                    predictorNames = c("trt", "karno", "age"))

> # Outputting: Figure 7.10: rSF-2

>
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Figure 7.9 rSF-1.
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Figure 7.10 rSF-2.
> plot.variable(v.out, type= "surv", npred = 1, percentile = 50)

> # Outputting: Figure 7:11: rSF-3
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Figure 7.11 rSF-3.
>

> plot.variable(v.out, type = "rel.freq", partial = TRUE,
+                        plots.per.page = 2, npred=3)
> # Outputting: Figure 7.12: rSF-4

>
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Figure 7.12 rSF-4.
(a)
Explain the function of each line of the R code-segment for this computation.

ANSWER:

In the order of the R code segment
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Installing the R package randomSurvivalForest
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Calling out the library of the package randomSurvivalForest
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Listing the contents of the package randomSurvivalForest
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Installing the R package survival
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Calling out the library of the package survival
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Listing the contents of the package survival
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Plotting the parameter plot.variable from the file pbc.out
(b)
Rerun the above code segment in the R environment.

(An exercise for each student.)

(c)
Recalculate the estimation of cluster sizes for another dataset from the CRAN package survival. Comment on the results.

(This is left as a practice exercise.)

5.
Repeat the computation as in Exercise 4, but this time use the dataset pbc, viz.,

>

> install.packages("randomSurvivalForest")

> library(randomSurvivalForest)

> ls(package:randomSurvivalForest)
>

> install.packages("survival")

> library(survival)

> ls("package:survival")
>
> # Fast partial plots using ’time’ type.> # Top 8 predictors from PBC data.
> data(pbc, package = "randomSurvivalForest")

> pbc.out <- rsf(Surv(days,status) ~ ., pbc,
+                         ntree=1000,nsplit=3)

>  plot.variable(pbc.out, type = "time", partial = TRUE,
+                         npred=8)

> # Outputting: Figure 7:13: rSF-5
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Figure 7:13 rSF-5.
(a)
(Results)
Explain the function of each line of the R code segment for this computation.

(If necessary, refer to the CRAN website for definitions of terminologies.)

(b)
Rerun the above code segment in the R environment.

(An exercise for each student!)

(c)
Rerun the above code segment in the R environment, EXCEPT using the following output command:
> plot.variable(pbc.out, type = "time", partial = TRUE,
+                       npred=16)

to output Figure 7.14: rSF-6. Comment on the results.
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Figure 7.14 rSF-6.
ANSWER:

>
> install.packages("randomSurvivalForest")

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)

Warning: package ‘randomSurvivalForest’ is in use and will not be installed

> library(randomSurvivalForest)

> ls(package:randomSurvivalForest)
[1]
"competing.risk"
"find.interaction"
"impute.rsf"
[4]
"max.subtree"
"plot.ensemble"
"plot.error"
[7]
"plot.proximity"
"plot.rsf"
"plot.variable"
[10]
"pmml2rsf"
"predict.rsf"
"print.rsf"
[13]
"randomSurvivalForest"
"rsf"
"rsf.news"
[16]
"rsf2pmml"
"rsf2rfz"
"varSel"
[19]
"vimp"
Warning message:

In ls(package:randomSurvivalForest) :

 ‘package:randomSurvivalForest’ converted to character string

>
> install.packages("survival")

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)

Warning: package ‘survival’ is in use and will not be installed

> library(survival)

> ls("package:survival")
[1]
"aareg"
"aml"
"attrassign"
[4]
"basehaz"
"bladder"
"bladder1"
[7]
"bladder2"
"cancer"
"cch"
[10]
"cgd"
"clogit"
"cluster"
[13]
"colon"
"cox.zph"
"coxph"
[16]
"coxph.control"
"coxph.detail"
"coxph.fit"
[19]
"dsurvreg"
"format.Surv"
"frailty"
[22]
"frailty.gamma"
"frailty.gaussian"
"frailty.t"
[25]
"heart"
"is.na.coxph.penalty"
"is.na.ratetable"
[28]
"is.na.Surv"
"is.ratetable"
"is.Surv"
[31]
"jasa"
"jasa1"
"kidney"
[34]
"labels.survreg"
"leukemia"
"logan"
[37]
"lung"
"match.ratetable"
"mgus"
[40]
"mgus1"
"mgus2"
"nwtco"
[43]
"ovarian"
"pbc"
"pbcseq"
[46]
"pspline"
"psurvreg"
"pyears"
[49]
"qsurvreg"
"ratetable"
"ratetableDate"
[52]
"rats"
"rats2"
"ridge"
[55]
"stanford2"
"strata"
"Surv"
[58]
"survConcordance"
"survdiff"
"survexp"
[61]
"survexp.mn"
"survexp.us"
"survexp.usr"
[64]
"survfit"
"survfitcoxph.fit"
"survobrien"
[67]
"survreg"
"survreg.control"
"survreg.distributions"

[70]
"survreg.fit"
"survregDtest"
"survSplit"
[73]
"tcut"
"tobin"
"tt"
[76]
"untangle.specials"
"uspop2"
"veteran"
> # Fast partial plots using ’time’ type.> # Top 8 predictors
> # from PBC
> # data.

> data(pbc, package = "randomSurvivalForest")

> pbc.out <- rsf(Surv(days,status) ~ ., pbc,
+                        ntree=1000,nsplit=3)

> plot.variable(pbc.out, type = "time", partial = TRUE,
+                       npred=16)

> # Outputting: Figure S7.15: rSF-6.
[image: image112.jpg]T
1500
chol
40
ascites

T
500

30
albumin
T
100 300 500
platelet

20

086l 0544 000Z 0044 0S8l
Wi [eAIAINS PajoIpald LI [eAIAINS Pajolpaid i) [EAIMINS Pajolpaid wiy [BAIAINS pajolpaid

t
4

i
iH
i

T
200 500
copper
T
23
stage
T
14
prothrombin
T
400
trig

T
0
T
1
T
100

000z 00z 000z 0524 06l 05z 0g6l 008!

Wi [eAIAINS PajoIpald Wi [eAIAINS Pajolpaid Wiy [EAIMINS Pajolpaid wij [BAIAINS pajolpaid

14000

t H- e -4 i
= S e e RES
) 2 5 DEg s
L& [ R, -3 - e e
=] o \ .
g - - MNEL
056} 0844 056} 0844 o8l 058l

Wi [eAIAINS PajoIpald i) [eAIINS Pajolpaid i) [EAIMINS Pajolpaid wij [BAIAINS pajolpaid

o
10 20
bili

T
300
sgot
treatment

100
T
0

F \"

oosh 008l 0s6L 0081 ozl 008l

ns pajaipald

0

wi [eAIAINS pajaipald wiy [eAIAINS pajaipald wiy [eAIAINS pajaipald wi [e.





Figure S7.15 rSF-6.
Remarks:

The output, in Figure S7.15, consists of a 4 × 4 matrix of 16 plots of predicted survival times for each of the 16 cases, including:

(a)
10 cases of plots of survival times, with error limit bands, and

(b)
6 cases of A–B comparison boxplots for contrasting treatments applied.

Exercises for Section 7.2

____________________________

1.
Available in CRAN are a number of packages designed for pharmacokinetics data analysis, suitable for phase development support. These are:
(a)
PK, PKfit, PKtools, and nlmeODE. PK supports basic pharmacokinetic functions that use noncompartmental analysis methods; the other three mainly support modeling methods.

(b)
The packages MASS and drc that support the analysis of dose responses.
(c)
The package lattice for trellis graphics.

For a given task in phase development analysis, to search for a suitable R function appropriate for the task, one may start within the R environment as follows:
(i)
Starting from the “Help” option, select “CRAN home page” on the drop-down menu; you will be taken to the CRAN page.
(ii)
On the CRAN page, among the left hand side options, select “Search”; you will be taken to the CRAN search page.
(iii)
On the CRAN search page, select the “R site search”; you will be taken to the CRAN R site search page.
(iv)
Finally, enter the subject of interest into the “Query” box and Select “Search”.
(d)
If the phase development task at hand is to test for a particular biochemical substance in each case subject after a certain drug treatment, use the above steps to find a suitable R function in CRAN suitable for the task.

ANSWER:

Those four steps led to the following: Total 268 documents matching your query.
Results:

References:

[image: image113]
Views: [ Phase: 6 ] [ Development: 11 ] [ TOTAL: 3 ]


[image: image114]
Vignettes: [ Phase: 235 ] [ Development: 930 ] [ TOTAL: 103 ]
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Functions: [ Phase: 1955 ] [ Development: 2844 ] [ TOTAL: 162 ]

1.
annotations_sample.txt (score: 10)

Author: Unknown

Date: Tuesday, October 28, 2014, 16:10:01-0500

ProbeID PrimaryAccession RefSeqAccession GenbankAccession UniGeneID EntrezGeneID GeneSymbol GeneName EnsemblID TIGRID GO Description GenomicCoordinates Cytoband A_23_P100001 NM_207446 NM_207446 NM_20

http://finzi.psych.upenn.edu/R/library/agilp/extdata/annotations_sample.txt (520,878 bytes)

2.
Anthropometry: An R package for analysis of anthropometric data (score: 9)

Author: Guillermo Vinué
Date: Sunday, May 17, 2015, 13:28:46-0500
Anthropometry: An R package for analysis of anthropometric data. Guillermo Vinué, Department of Statistics and O.R., University of Valencia, Valencia, Spain. Abstract The development of powerful new ...
http://finzi.psych.upenn.edu/R/library/vignettes/../Anthropometry/doc/Anthropometry.pdf (834,636 bytes)

etc.

268.
userguide.pdf (score: 1)

Author: Unknown
Date: Wednesday, February 22, 2012, 19:22:36-0500
Users guide to the R-to-MOSEK interface. Made by: Henrik Alsing Friberg <mhaf@mosek.com> August 30, 2011. © MOSEK ApS. Scope The MOSEK Optimization library provides a solver with industrial strength capable ...
http://finzi.psych.upenn.edu/R/library/rmosek/userguide.pdf (527,611 bytes)

2.
Besides CRAN, there are other source platforms for biostatistical software that use R: two of which are Bioconductor, and PBSmodelling. They may be accessed from the following sources:
(i)
For Bioconductor
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Starting from the Internet website: http://bioconductor.org/.
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Select “Install.”

[image: image118]
Select “Software” from the table of software releases.
ANSWER:

A start using Bioconductor

Starting from the Internet website: http://bioconductor.org/
The current release of Bioconductor is version 3.1; it works with R version 3.2.1. Users of older R and Bioconductor versions must update their installation to take advantage of new features.

Install the latest release of R, then get the latest version of Bioconductor by starting R and entering the commands

source("http://bioconductor.org/biocLite.R")

biocLite()

Details, including instructions to install additional packages and to update, find, and troubleshoot are provided below. A devel version of Bioconductor is available. There are good reasons for using biocLite() for managing Bioconductor resources.

Install R:
1.
Download the most recent version of R. The R FAQs and the R Installation and Administration Manual contain detailed instructions for installing R on various platforms (Linux, OS X, and Windows being the main ones).

1.
Start the R program; on Windows and OS X, this will usually mean double-clicking on the R application, on UNIX-like systems, type “R” at a shell prompt.

2.
As a first step with R, start the R help browser by typing help.start() in the R command window. For help on any function, for example, the “mean” function, type ? mean.

Install Bioconductor Packages:
Use the biocLite.R script to install Bioconductor packages. To install core packages, type the following in an R command window:

source("http://bioconductor.org/biocLite.R")

biocLite()

Install specific packages, for example, “GenomicFeatures” and “AnnotationDbi”, with

biocLite(c("GenomicFeatures", "AnnotationDbi"))

The biocLite() function (in the BiocInstaller package installed by the biocLite.R script) has arguments that change its default behavior; type ?biocLite for further help.

Find Bioconductor Packages:
Visit the Workflows page and software package list to discover available packages.

Update Installed Bioconductor Packages:
Bioconductor packages, especially those in the development branch, are updated fairly regularly. To identify packages requiring update within your version of Bioconductor, start a new session of R and enter

source("http://bioconductor.org/biocLite.R")

biocLite()                  ## R version 3.0 or later

Use the argument ask=FALSE to update old packages without being prompted. For older versions of R, use the command biocLite(NULL). Read the help page for ?biocLite for additional details.

Upgrading installed Bioconductor packages

Some versions of R support more than one version of Bioconductor. To use the latest version of Bioconductor for your version of R, enter

source("http://bioconductor.org/biocLite.R")

biocLite("BiocUpgrade")     ## R version 2.15 or later

Read the help page for ?BiocUpgrade for additional details. Remember that more recent versions of Bioconductor may be available if your version of R is out of date.

Recompiling installed Bioconductor packages

Rarely, underlying changes in the operating system require ALL installed packages to be recompiled for source (C or Fortran) compatibility. One way to address this might be to start a new R session and enter

source("http://bioconductor.org/biocLite.R")

pkgs <- rownames(installed.packages())

biocLite(pkgs, type="source")

As this will reinstall all currently installed packages, it likely involves a significant amount of network bandwidth and compilation time. All packages are implicitly updated, and the cumulative effect might introduce wrinkles that disrupt your workflow. It also requires that you have the necessary compilers installed.

Troubleshoot Package Installations:
Use the commands

library(BiocInstaller)

biocValid()             ## R version 3.0 or later

to flag packages that are either out of date or too new for your version of Bioconductor. The output suggests ways to solve identified problems, and the help page ?biocValid lists arguments influencing the behavior of the function.

Why Use biocLite()?

biocLite() is the recommended way to install Bioconductor packages. There are several reasons for preferring this to the “standard” way in which R packages are installed via install.packages().

Bioconductor has a repository and release schedule that differs from R. Bioconductor has a “devel” branch where new packages and updates are introduced and a stable “release” branch updated once every 6 months where bug fixes but not new features are introduced.

A consequence of the mismatch between R and Bioconductor release schedules is that the Bioconductor version identified by install.packages() is sometimes not the most recent release available. For instance, an R minor version may be introduced some months before the next Bioc release. After the Bioc release, the users of the R minor version will be pointed to an out-of-date version of Bioconductor.

A consequence of the distinct devel branch is that install.packages() sometimes points only to the release repository, whereas Bioconductor developers and users wanting leading-edge features will want to access the Bioconductor devel repository. For instance, the Bioconductor 3.0 release is available for R.3.1.x, so Bioconductor developers and leading-edge users need to be able to install the devel version of Bioconductor packages into the same version (though perhaps a different instance or at least library location) of R that supports version 2.14 of Bioconductor.

An indirect consequence of Bioconductor’s structured release is that packages generally have more extensive dependencies on one another, both explicitly via the usual package mechanisms and implicitly because the repository, release structure, and Bioconductor community interactions favor reuse of data representations and analysis concepts across packages. There is thus a higher premium on knowing that packages are from the same release and that all packages are current within the release.

These days, the main purpose of source("http://bioconductor.org/biocLite.R") is to install and attach the “BiocInstaller” package.

In a new installation, the script installs the most recent version of the BiocInstaller package relevant to the version of R in use, regardless of the relative times of R and Bioconductor release cycles. The BiocInstaller package serves as the primary way to identify the version of Bioconductor in use

> library(BiocInstaller)

Bioconductor version 2.14 (BiocInstaller 1.14.2), ?biocLite for help

As new features are often appealing to users, but at the same time require an updated version of Bioconductor, the source() command evaluated in an out-of-date R will nudge users to upgrade (e.g., in R-2.15.3)
>
source("http://bioconductor.org/biocLite.R")

A new version of Bioconductor is available after installing the most

recent version of R; see http://bioconductor.org/install

The biocLite() function is provided by BiocInstaller. This is a wrapper around install.packages, but with the repository chosen according to the version of Bioconductor in use, rather than to the version relevant at the time of the release of R.

biocLite() also nudges users to remain current within a release, by default checking for out-of-date packages and asking if the user would like to update

>
biocLite()

BioC_mirror: http://bioconductor.org

Using Bioconductor version 2.14 (BiocInstaller 1.14.2), R version

3.1.0.

Old packages: 'BBmisc', 'genefilter', 'GenomicAlignments',

'GenomicRanges', 'IRanges', 'MASS', 'reshape2', 'Rgraphviz',

'RJSONIO', 'rtracklayer'

Update all/some/none? [a/s/n]:

The BiocInstaller package provides facilities for switching to the devel version of Bioconductor

> BiocInstaller::useDevel()

Installing package into ‘/home/mtmorgan/R/x86_64-unknown-linux-gnu-library/3.1’

(as ‘lib’ is unspecified)

trying URL 'http://bioconductor.org/packages/3.0/bioc/src/contrib/BiocInstaller_1.15.5.tar.gz'

Content type 'application/x-gzip' length 14144 bytes (13 Kb)

opened URL

==================================================

downloaded 13 Kb

* installing *source* package ‘BiocInstaller’ ...

...

Bioconductor version 3.0 (BiocInstaller 1.15.5), ?biocLite for help

'BiocInstaller' changed to version 1.15.5

(At some points in the R/Bioconductor release cycle, the use of devel requires the use of a different version of R itself, in which case the attempt to useDevel() fails with an appropriate message.)

The BiocInstaller package also provides biocValid() to test that the installed packages are not a hodgepodge from different Bioconductor releases (the “too new” packages have been installed from the source rather than a repository; regular users would seldom have these).

> biocValid()

* sessionInfo()

R version 3.1.0 Patched (2014-05-06 r65533)

Platform: x86_64-unknown-linux-gnu (64-bit)

...

* Out-of-date packages

...

update with biocLite()

* Packages too new for Bioconductor version '3.0'

...

downgrade with biocLite(c("ShortRead", "BatchJobs"))

Error: 9 package(s) out of date; 2 package(s) too new

For users who spend a lot of time in Bioconductor, the features outlined above become increasingly important and biocLite() is preferred over install.packages().

Preconfigured Bioconductor:
Bioconductor is also available as a set of Amazon Machine Images (AMIs) and Docker images.
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Packages:
Bioconductor’s stable, semi-annual release:
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Illustrative experiment data packages
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Latest release announcement

Bioconductor is also available via Docker and AMIs.
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(ii)
For PBSmodelling[11]
The R package PBSmodelling contains software to facilitate the design, testing, and operation of computer models. The initials PBS refer to the Pacific Biological Station, a major fisheries laboratory on Canada’s Pacific coast in Nanaimo, British Columbia. Initially designed for fisheries scientists, this package has broad potential application in many scientific fields.
PBSmodelling focuses particularly on tools that make it easy to construct and edit a customized graphical user interface (GUI) appropriate for a particular application. The package is available from CRAN also.

Repeat Exercise 1, using an appropriate R function from Bioconductor.

3.
Repeat Exercise 1, using an appropriate R function from PBSmodelling.
Description (from the CRAN website):
PBSmodelling provides software to facilitate the design, testing, and operation of computer models. It focuses particularly on tools that make it easy to construct and edit a customized GUI. Although it depends heavily on the R interface to the Tcl/Tk package, a user does not need to know Tcl/Tk.

PBSmodelling contains examples that illustrate models built using other R packages, including PBSmapping, odesolve, PBSddesolve, and BRugs. It also serves as a convenient prototype for building new R packages, along with instructions and batch files to facilitate that process.

The R directory .../library/PBSmodelling/doc includes a complete user guide “PBSmodelling-UG.pdf”. To use this package effectively, please consult the guide. PBSmodelling comes packaged with interesting examples accessed through the function runExamples().

Additionally, users can view PBSmodelling widgets through the function testWidgets(). More generally, a user can run any available demos in his/her locally installed packages through the function runDemos().

4.
In the CRAN package PKtools, [12] which supports computations for WinBUGS, NONMEM V, NLME, etc., the R function diagtrplot() creates a trellis plot of the observed concentrations and predicted values vs. time by subject. Its usage format is

diagtrplot(x,level,xvarlab,yvarlab,pages,...)

for which the arguments are:

x
Variable identifying the clustering variable.
level
Level of mixed model ("p"—population, "i"—individual).
xvarlab
Label for x variable.
yvarlab
Label for y variable.
pages
Number of pages to print; “1” prints first page

...
Additional arguments to be passed to lower level functions.
The following R code segment illustrates an application of this package:
> install.packages("PKtools")

> library(PKtools)

Loading required package: lattice

Loading required package: nlme

Loading required package: R2HTML

Loading required package: xtable

> ls("package:PKtools")

[1]
"AICcomp"
"bugs"
"coVar.id"
"desc"
"diagplot"
[6]
"diagtrplot"
"HTMLtools"
"indEst"
"lonecpmt"
"obvsprplot"
[11]
"paramEst"
"pk"
"PKtools.AIC"
"residplot"
"RunNLME"
[16]
"RunNM"
"RunWB"
"sonecpmt"
"tex"
"trplot"
> library(nlme)

> data(Theoph)

> Theoph <- Theoph[Theoph$Time!=0,]

> id <- as.numeric(as.character(Theoph$Subject))

> dose <- Theoph$Dose

> time <- Theoph$Time

> conc <- round(sqrt(Theoph$conc),4)

> Theo <- data.frame(cbind(id,dose,time,conc))

> names(Theo) <- c("id","dose","time","conc")

> wt.v <- Theoph$Wt

> data <- list(pkvar = Theo, cov = wt.v)

> nameData <- list(covnames = c("wt"),

+                              yvarlab = "Sqrt(Theop. Conc.) (mg/L)",

+                              xvarlab = "Time since dose (hrs)",

+                              reparams = c("Cl"),

+                              params = c("Ka","V", "Cl"),

+                              tparams = c("log(Ka)","log(V)","log(CL)"))

> model.def <- list(fixed.model=lKa+lV+lCl~1,

+                              random.model=lCl~1,

+                              start.lst=c(lKa=.3,lV=-.6,lCl=-3),
+                              form=conc~sonecpmt(dose, time,

+                                           lV, lKa, lCl),
+                              control=nlmeControl(returnObject=FALSE))

> MM<-RunNLME(inputStructure=model.def,data=data,
+                            nameData=nameData)

> diagtrplot(x=MM,level="p", xvarlab=nameData$xvarlab,

+                  yvarlab=nameData$xvarlab, pages=1)

+ #  Outputting: Figure 7.17
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Figure 7.17 Using CRAN package PKtools.
(a)
Explain the function of each line of the R code segment for this computation.

(If necessary, refer to the CRAN website for definitions of terminologies.)

(b)
Rerun the above code segment in the R environment.

(The foregoing results may be readily obtained.)

(c)
Compare and comment on the R code-predicted values vs. observed values of this dataset.

It appears that as time progresses, the R code-predicted values closely approach the observed values, both in the trends as well as in absolute values.

5.
R computations for pharmacokinetics of indomethacin

The CRAN package nlmeODE[13] (non-linear mixed-effects modeling using Ordinary Differential Equations) actually combines two packages: nlme and Odesolve, for mixed-effects modeling using differential equations.

The following R code segment models the pharmacokinetics of indomethacin, using this CRAN package:

> install packages("nlmeODE")

package odesolve successfully unpacked and MD5 sums checked

package nlmeODE successfully unpacked and MD5 sums checked

> library(nlmeODE)

Loading required package: odesolve
odesolve is deprecated! Use the solvers in deSolve instead.

odesolve will be removed from CRAN by the end of 2012.

Loading required package: nlme
Loading required package: lattice
> ls("package:nlmeODE")

[1] "nlmeODE"

>
####################################

### Pharmacokinetics of Indomethacin  ###
####################################
> data(Indometh)
> Indometh # Outputting the data frame Indometh for inspection:
Grouped Data: conc ~ time | Subject


Subject
time
conc

1
1
0.25
1.50

2
1
0.50
0.94

3
1
0.75
0.78

4
1
1.00
0.48

5
1
1.25
0.37

…………………………………...
…………………………………...
64
6
5.00
0.13

65
6
6.00
0.10

66
6
8.00
0.09

>

> TwoComp <- list(DiffEq=list(

+ dy1dt = ~ -(k12+k10)*y1+k21*y2 ,

+ dy2dt = ~ -k21*y2 + k12*y1),

+ ObsEq=list(

+ c1 = ~ y1,

+ c2 = ~ 0),

+ States=c("y1","y2"),

+ Parms=c("k12","k21","k10","start"),

+ Init=list("start",0))

> IndomethModel <- nlmeODE(TwoComp,Indometh)

> Indometh.nlme <- nlme(conc ~
+ IndomethModel(k12,k21,k10,start,time,Subject),

+ data = Indometh, fixed=k12+k21+k10+start~1,
+ random = pdDiag(start+k12+k10~1),

+ start=c(k12=-0.05,k21=-0.15,k10=-0.10,start=0.70),

+ control=list(msVerbose=TRUE),

+ verbose=TRUE)

0:
-12.615270:
-0.785113
-1.41611
-0.440966

1:
-12.615270:
-0.785095
-1.41627
-0.440425

2:
-12.615270:
-0.785095
-1.41627
-0.440425

**Iteration 1

LME step: Loglik: 57.22393 , nlm iterations: 2
reStruct  parameters:


Subject1
Subject2
Subject3
-0.7850948
-1.4162729
-0.4404247
PNLS step: RSS =  0.4128427
fixed effects: -0.0331751  -0.115947  -0.111574  0.717857 
iterations: 7
Convergence:


fixed
reStruct
0.5071548
0.2703262
0:
-11.974429:
-0.766570
-1.43832
-0.347128

1:
-11.974429:
-0.766340
-1.43872
-0.345577

2:
-11.974429:
-0.766497
-1.43869
-0.345660

3:
-11.974430:
-0.766594
-1.43863
-0.346103

4:
-11.974430:
-0.766487
-1.43861
-0.346124

5:
-11.974430:
-0.766513
-1.43851
-0.346167

6:
-11.974430:
-0.766544
-1.43859
-0.346197

7:
-11.974430:
-0.766527
-1.43858
-0.346173

8:
-11.974430:
-0.766529
-1.43857
-0.346176

**Iteration 2

LME step: Loglik: 56.58309 , nlm iterations: 8
reStruct  parameters:


Subject1
Subject2
Subject3
-0.7665286
-1.4385742
-0.3461758
PNLS step: RSS =  0.4128658
fixed effects:-0.0331751  -0.115947  -0.111574  0.717857 
iterations: 1
Convergence:


fixed
reStruct
0.000000000
0.002752387
0:
-11.974430:
-0.766529
-1.43857
-0.346176

1:
-11.974430:
-0.766529
-1.43857
-0.346176

**Iteration 3

LME step: Loglik: 56.58309 , nlm iterations: 1
reStruct  parameters:


Subject1
Subject2
Subject3
-0.7665286
-1.4385745
-0.3461757
PNLS step: RSS =  0.4128658
fixed effects:-0.0331751  -0.115947  -0.111574  0.717857 
iterations: 1
Convergence:


fixed
reStruct
0.00000e+00
3.03061e-08
> plot(augPred(Indometh.nlme,level=0:1)

> # Outputting: Figure 7.18
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Figure 7.18 Pharmacokinetics of indomethacin by nlmeODE.
(a)
Explain the function of each line of the R code segment for this computation.
ANSWER:

(If necessary, refer to the CRAN website for definitions of terminologies.)

(b)
Rerun the above code segment in the R environment.

ANSWER:

(The foregoing results may be readily obtained.)

(c)
Replace the last command of the code segment by

> plot(augPred(Indometh.nlme))

then rerun the entire code segment. Comment on the new resulting plot.

ANSWER:

In the R environment:

>
> install.packages("nlmeODE")

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)

--- Please select a CRAN mirror for use in this session ---

(The CRAN mirror USA (CA2) was selected.)

trying URL
'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/nlmeODE_1.1.zip'

Content type 'application/zip' length 31333 bytes (30 Kb)

opened URL

downloaded 30 Kb

package ‘nlmeODE’ successfully unpacked and MD5 sums checked

The downloaded packages are in

C:\Users\bertchan\AppData\Local\Temp\RtmpuqD4h3\downloaded_packages

> library(nlmeODE)

Loading required package: deSolve

Loading required package: nlme

Loading required package: lattice

Warning messages:

1: package ‘nlmeODE’ was built under R version 2.14.2
2: package ‘deSolve’ was built under R version 2.14.2
3: package ‘lattice’ was built under R version 2.14.2
> ls("package:nlmeODE")

[1] "nlmeODE"

> data(Indometh)
> Indometh

Grouped Data: conc ~ time | Subject


Subject
time
conc

1
1
0.25
1.50

2
1
0.50
0.94

3
1
0.75
0.78

4
1
1.00
0.48

5
1
1.25
0.37

6
1
2.00
0.19

7
1
3.00
0.12

8
1
4.00
0.11

9
1
5.00
0.08

10
1
6.00
0.07

11
1
8.00
0.05

12
2
0.25
2.03

13
2
0.50
1.63

14
2
0.75
0.71

15
2
1.00
0.70

16
2
1.25
0.64

17
2
2.00
0.36

18
2
3.00
0.32

19
2
4.00
0.20

20
2
5.00
0.25

21
2
6.00
0.12

22
2
8.00
0.08

23
3
0.25
2.72

24
3
0.50
1.49

25
3
0.75
1.16

26
3
1.00
0.80

27
3
1.25
0.80

28
3
2.00
0.39

29
3
3.00
0.22

30
3
4.00
0.12

31
3
5.00
0.11

32
3
6.00
0.08

33
3
8.00
0.08

34
4
0.25
1.85

35
4
0.50
1.39

36
4
0.75
1.02

37
4
1.00
0.89

38
4
1.25
0.59

39
4
2.00
0.40

40
4
3.00
0.16

41
4
4.00
0.11

42
4
5.00
0.10

43
4
6.00
0.07

44
4
8.00
0.07

45
5
0.25
2.05

46
5
0.50
1.04

47
5
0.75
0.81

48
5
1.00
0.39

49
5
1.25
0.30

50
5
2.00
0.23

51
5
3.00
0.13

52
5
4.00
0.11

53
5
5.00
0.08
54
5
6.00
0.10

55
5
8.00
0.06

56
6
0.25
2.31

57
6
0.50
1.44

58
6
0.75
1.03

59
6
1.00
0.84

60
6
1.25
0.64

61
6
2.00
0.42

62
6
3.00
0.24

63
6
4.00
0.17

64
6
5.00
0.13

65
6
6.00
0.10

66
6
8.00
0.09

> TwoComp <- list(DiffEq=list(

+ dy1dt = ~ -(k12+k10)*y1+k21*y2 ,

+ dy2dt = ~ -k21*y2 + k12*y1),

+ ObsEq=list(

+ c1 = ~ y1,

+ c2 = ~ 0),

+ States=c("y1","y2"),

+ Parms=c("k12","k21","k10","start"),

+ Init=list("start",0))

> IndomethModel <- nlmeODE(TwoComp,Indometh)

> Indometh.nlme <- nlme(conc ~
+ IndomethModel(k12,k21,k10,start,time,Subject),

+ data = Indometh, fixed=k12+k21+k10+start~1,
+ random = pdDiag(start+k12+k10~1),

+ start=c(k12=-0.05,k21=-0.15,k10=-0.10,start=0.70),

+ control=list(msVerbose=TRUE),

+ verbose=TRUE)

0:
-12.615270:
-0.785113
-1.41611
-0.440966

1:
-12.615270:
-0.785095
-1.41627
-0.440425

2:
-12.615270:
-0.785095
-1.41627
-0.440425

*Iteration 1

LME step: Loglik: 57.22393 , nlm iterations: 2
reStruct  parameters:


Subject1
Subject2
Subject3
-0.7850949
-1.4162727
-0.4404246
PNLS step: RSS =  0.4128425
fixed effects:-0.0331755  -0.115947  -0.111574  0.717857 
iterations: 7
Convergence:


fixed
reStruct
0.5071378
0.2702987
0:
-11.974433:
-0.766571
-1.43832
-0.347136

1:
-11.974434:
-0.766337
-1.43872
-0.345585

2:
-11.974434:
-0.766496
-1.43869
-0.345667

3:
-11.974434:
-0.766598
-1.43863
-0.346097

4:
-11.974434:
-0.766481
-1.43861
-0.346123

5:
-11.974434:
-0.766511
-1.43850
-0.346175

6:
-11.974434:
-0.766553
-1.43859
-0.346215

7:
-11.974434:
-0.766527
-1.43858
-0.346179

8:
-11.974434:
-0.766529
-1.43857
-0.346183

**Iteration 2

LME step: Loglik: 56.5831 , nlm iterations: 8
reStruct  parameters:

Subject1   Subject2   Subject3
-0.7665287 -1.4385727 -0.3461828
PNLS step: RSS =  0.4128656
fixed effects:-0.0331755  -0.115947  -0.111574  0.717857
iterations: 1
Convergence:


fixed
reStruct
0.000000000
0.002754395
0:
-11.974434:
-0.766529
-1.43857
-0.346182

1:
-11.974434:
-0.766529
-1.43857
-0.346182

**Iteration 3

LME step: Loglik: 56.5831 , nlm iterations: 1
reStruct  parameters:

 Subject1   Subject2   Subject3
-0.7665286 -1.4385731 -0.3461825
PNLS step: RSS =  0.4128656
fixed effects:-0.0331755  -0.115947  -0.111574  0.717857 
iterations: 1
Convergence:


fixed
reStruct
0.000000e+00
5.772908e-08
> plot(augPred(Indometh.nlme))

> # Outputting: Figure S7.18
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Figure S7.18
Remarks:

Comparing Figure S7.18 (in this study guide) with Figure 7.18 (in the printed book), it is seen that Figure S7.18 shows only one level of correlation of the indomethacin concentration (at the subject level only), whereas Figure 7.18 shows two levels of correlation of the indomethacin concentration (at the fixed and subject levels). This was controlled by the outputting statement plot(…) in the applicable line in the two R code segments.

Exercises for Section 7.3

____________________________

1.
Survival analysis: receiver operating characteristic (ROC) curves in R
The ROC curve (e.g., Figure 7.30) is a tool used in prediction and classification. It shows the trade-off between sensitivity and specificity—for a range of thresholds applied to an explanatory variable—to predict a binary outcome decision.

The sensitivity vs. specificity relationship is usually plotted, with the area under the curve often being used as a measure of discriminatory performance:
1 = perfect and 0.5 = no better than a random guess
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Figure 7.30 A receiver operating characteristic curve.
The R function survivalROC(), in the CRAN package survivalROC, creates time-dependent ROC curves from censored survival data using the K–M or nearest neighbor estimation (NNE) method of Heagerty, Lumley, and Pepe.[28]
The usage formula for the function survivalROC() is:

survivalROC(Stime, status, marker, entry = NULL, predict.time,
                       cut.values = NULL, method = "NNE",
                       lambda = NULL, span = NULL,
                       window = "symmetric")

for which the arguments are

Stime
Event time or censoring time for subjects.
status
Indicator of status; 1 if death or event, 0 otherwise.
marker
Predictor or marker value.
entry
Entry time for the subjects.
predict.time
Time point of the ROC curve.
cut.values
Marker values to use as a cutoff for calculations of sensitivity and specificity.
method
Method for fitting joint distribution of (x, t), either of K–M or NNE; the default method is NNE.
lambda
Smoothing parameter for NNE.
span
Span for the NNE, need either lambda or span for NNE.
window
Window for NNE, either symmetric or asymmetric.
Suppose one has censored survival data along with a baseline marker value and one would like to see how well the marker predicts the survival time for the subjects in the dataset. In particular, suppose one has survival times in days and one wants to see how well the marker predicts the 1-year survival (predict.time=365 days). This function roc.KM.calc(), returns the unique marker values, TP (True Positive), FP (False Positive), K–M survival estimate corresponding to the time point of interest (predict.time), and AUC (area under the ROC curve) at the time point of interest.
The function survivalROC() returns a list of the following items:
cut.values
Unique marker values for calculation of TP and FP.
TP
True positive corresponding to the cutoffs in x.
FP
False positive corresponding to the cutoffs in x.
predict.time
Time point of interest.
Survival
K–M survival estimate at predict.time.
AUC
Area under the OC curve at time predict.time.
Using the dataset mayo, the following R code segment is used to generate an ROC curve in Figure 7.30, using the NNE method:

>

> install.packages("survivalROC")

> library(survivalROC)

> ls("package:survivalROC")

[1] "survivalROC"   "survivalROC.C"

> data(mayo)

mayo


time
censor
mayoscore5
mayoscore4

1
41
1
11.251850
10.629450

2
179
1
10.136070
10.185220

3
334
1
10.095740
9.422995

………………………………………………………………

………………………………………………………………
312
533
0
6.115321
6.902997

> nobs <- NROW(mayo)

> nobs

[1] 312

> cutoff <- 365

>

>   ## MAYOSCORE 4, METHOD = NNE

>   Mayo4.1= survivalROC(Stime=mayo$time, 
+     status=mayo$censor,     
+     marker = mayo$mayoscore4,    
+     predict.time = cutoff,span = 0.25*nobs^(-0.20) )

>   plot(Mayo4.1$FP, Mayo4.1$TP, type="l", xlim=c(0,1),
+          ylim=c(0,1),  
+   xlab=paste( "FP", "\n", "AUC = ",round(Mayo4.1$AUC,3)),
+   ylab="TP",main="Mayoscore 4, Method = NNE \n  Year = 1")

>   abline(0,1)

> # Outputting: Figure 7.31.
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Figure 7.31 ROC curve for dataset mayo using survivalROC(); method = nearest neighbor estimation (NNE).
(a)
Explain the function of each line of the R code segment for this computation.

ANSWER:

(If necessary, refer to the CRAN website for definitions of terminologies.)

(b)
Rerun the above code segment in the R environment.

ANSWER:

(The foregoing results may be readily obtained.)

(c)
Comment on the resulting plot.

ANSWER:

The plot in Figure 7.31 shows that the values of TP (true positive corresponding to the cutoffs in x) are all above the diagonal line, rising rapidly from 0 to 0.95 at about AUC (area under the ROC curve at time predict.time) = 0.15. Thereafter, the TP value reaches its maximum value asymptotically to nearly 1.0.

2.
Survival analysis: ROC curves in R
Again, using the dataset mayo, the following R code segment is used to generate an ROC curve in Figure 7.32, but using the K–M method:

>
> ## MAYOSCORE 4, METHOD = KM

>   Mayo4.2= survivalROC(Stime=mayo$time, 
+      status=mayo$censor,     
+      marker = mayo$mayoscore4,    
+      predict.time =  cutoff, method="KM")

>   plot(Mayo4.2$FP, Mayo4.2$TP, type="l", xlim=c(0,1),
+          ylim=c(0,1),  
+   xlab=paste( "FP", "\n", "AUC = ",round(Mayo4.2$AUC,3)),
+   ylab="TP",main="Mayoscore 4, Method = KM \n Year = 1")

>   abline(0,1)

> # Outputting: Figure 7.32.
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Figure 7.32 ROC curve for dataset mayo using survivalROC(); method = Kaplan–Meier (KM).
Again,

(a)
Explain the function of each line of the R code segment for this computation.

ANSWER:

(If necessary, refer to the CRAN website for definitions of terminologies.)

(b)
Rerun the above code segment in the R environment.

ANSWER:

(The foregoing results may be readily obtained.)

(c)
Comment on the resulting plot.

ANSWER:

The plot on Figure 7.32 shows that the values of TP (true positive corresponding to the cutoffs in x) are also all above the diagonal line, rising rapidly, stepwise, from 0 to 0.95 at about AUC (area under the ROC curve at time predict.time) = 0.15. Thereafter, the TP value reaches its maximum value asymptotically to nearly 1.0.

3.
Survival analysis and confounding
CRAN package NestedCohort for survival analysis of epidemiologic investigations nested within cohorts[29]
This package contains R functions that undertake survival analysis (K–M and Cox models) for epidemiologic investigations nested within cohorts; these functions are used for estimating hazard ratios, estimating survival probabilities, and standardizing confounders.

The function NestedCohort() is particularly appropriate for evaluating survival probabilities and known risks.
In the following worked example, the observations consisted of the esophageal cancer outcome and survival time on all case subjects, along with known confounders. The interest is centered on the effect of the concentrations of various metals, especially zinc, on this cancer. However, measuring the effect of the concentrations requires esophageal biopsy tissue and a costly measurement technique, and it is difficult and expensive to measure concentrations on all the case subjects. Hence, the concentration of zinc (along with copper, nickel, iron, calcium, and sulfur) was measured on a selected sample of the cohort. This sample oversampled the cases and those with advanced baseline histologies (i.e., those most likely to become cases) as these are the most informative case subjects. Owing to availability and cost constraints, less than 30% of the cohort could be sampled.
In this example, the function NestedCohort() provides adjusted hazard ratios, standardized survival probabilities, and population-attributable risks (PARs) for the effect of zinc on the cancer. In particular, in this example, the function nested.km() is used to estimate and fit the K–M survival curves to the nested cohort data.

The R code segment for the analysis is as follows:
>

> install.packages("NestedCohort")

> library(NestedCohort)

Loading required package: survival

Loading required package: splines

Loading required package: MASS

> ls("package:NestedCohort")

[1] "nested.coxph"   "nested.km"      "nested.stdsurv"

> data(zinc)

> attach(zinc)

> zinc # Examining the details of the dataset!

id8
sex
age
pill agestr
smoke
drink
anyhist

1
10100012
Female
53
51<=Age<=60
Never
Never
<NA>

2
10100123
Female
54
51<=Age<=60
Never
Never
<NA>

3
10300066
Male
54
51<=Age<=60
Never
Ever
<NA>

……………………………………………………………………………………………………...
……………………………………………………………………………………………………...
440
32500344
Female
57
51<=Age<=60
Never
Never
No Family







History

basehist
dysp1
dysp2
mildysp
moddysp

1
Normal
1
0
Worst isn't mild
Worst isn't moderate

2
Normal
1
0
Worst isn't mild
Worst isn't moderate

3
Normal
1
0
Worst isn't mild
Worst isn't moderate

……………………………………………………………………………………………………….
……………………………………………………………………………………………………….
440
Normal
1
0
Worst isn't mild
Worst isn't moderate


sevdysp
ec01
futime01
zincset
pcent

1
Worst isn't severe
0
5980
Unobserved Elements
NA

2
Worst isn't severe
0
5980
Unobserved Elements
NA

3
Worst isn't severe
0
5980
Unobserved Elements
NA

--------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------
440
Worst isn't severe
1
3973
Observed Elements
0.02219326


scent
cacent
fecent
nicent
cucent

1
NA
NA
NA
NA
NA

2
NA
NA
NA
NA
NA

3
NA
NA
NA
NA
NA

---------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------
440
0.187727832
-1.08682017
0.662201065
-0.787517392
0.811040423


zncent
pqt
sqt
caqt
feqt
niqt
cuqt
znqt
pq1
pq2
pq3
pq4
sq1
sq2
sq3

1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

2
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

-------------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------------------------------
440
0.680324598
2
3
1
4
2
3
3
0
1
0
0
0
0
1


sq4
caq1
caq2
caq3
caq4
feq1
feq2
feq3
feq4
niq1
niq2
niq3
niq4
cuq1
cuq2

1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

2
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

-------------------------------------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------------------------------------------------
440
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0


cuq3
cuq4
znq1
znq2
znq3
znq4
stdagepill
znquartiles
observed

1
NA
NA
NA
NA
NA
NA
-0.1818182
<NA>
0

2
NA
NA
NA
NA
NA
NA
0.0000000
<NA>
0

3
NA
NA
NA
NA
NA
NA
0.0000000
<NA>
0

--------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------
440
1
0
0
0
1
0
0.5454545
Q3
1

> str(zinc)

'data.frame':   431 obs. of  61 variables:

$ id8
: int  10100012 10100123 10300066 10400038 10400106 10400245 10500252 10500267 10800011 10800049 ...

$ sex
: Factor w/ 2 levels "Female","Male": 1 1 2 2 2 1 1 1 2 2 ...

$ agepill
: int  53 54 54 44 44 43 49 48 41 61 ...

$ agestr
: Factor w/ 3 levels "Age<=50","51<=Age<=60",..: 2 2 2 1 1 1 1 1 1 3 ...

$ smoke
: Factor w/ 2 levels "Never","Ever": 1 1 1 1 1 1 1 1 1 2 ...

$ drink
: Factor w/ 2 levels "Never","Ever": 1 1 2 2 1 1 1 1 2 2 ...

$ anyhist
: Factor w/ 2 levels "No Family History",..: NA NA NA NA NA NA NA NA NA NA ...

$ basehist
: Factor w/ 7 levels "Normal","Esophagitis",..: 1 1 1 1 3 2 1 1 1 1 ...

$ dysp1
: int  1 1 1 1 3 2 1 1 1 1 ...

$ dysp2
: int  0 0 0 0 1 0 0 0 0 0 ...

$ mildysp
: Factor w/ 2 levels "Worst isn't mild",..: 1 1 1 1 2 1 1 1 1 1 ...

$ moddysp
: Factor w/ 2 levels "Worst isn't moderate",..: 1 1 1 1 1 1 1 1 1 1 ...

$ sevdysp
: Factor w/ 2 levels "Worst isn't severe",..: 1 1 1 1 1 1 1 1 1 1 ...

$ ec01
: num  0 0 0 0 0 0 0 0 0 0 ...

$ futime01
: int  5980 5980 5980 5980 5980 3404 5980 5980 5980 5980 ...

$ zincset
: Factor w/ 2 levels "Unobserved Elements",..: 1 1 1 1 1 1 1 1 1 1 ...

$ pcent
: num  NA NA NA NA NA NA NA NA NA NA ...

$ scent
: num  NA NA NA NA NA NA NA NA NA NA ...

$ cacent
: num  NA NA NA NA NA NA NA NA NA NA ...

$ fecent
: num  NA NA NA NA NA NA NA NA NA NA ...

$ nicent
: num  NA NA NA NA NA NA NA NA NA NA ...

$ cucent
: num  NA NA NA NA NA NA NA NA NA NA ...

$ zncent
: num  NA NA NA NA NA NA NA NA NA NA ...

$ pqt
: int  NA NA NA NA NA NA NA NA NA NA ...

$ sqt
: int  NA NA NA NA NA NA NA NA NA NA ...

$ caqt
: int  NA NA NA NA NA NA NA NA NA NA ...

$ feqt
: int  NA NA NA NA NA NA NA NA NA NA ...

$ niqt
: int  NA NA NA NA NA NA NA NA NA NA ...

$ cuqt
: int  NA NA NA NA NA NA NA NA NA NA ...

$ znqt
: int  NA NA NA NA NA NA NA NA NA NA ...

$ pq1
: int  NA NA NA NA NA NA NA NA NA NA ...

$ pq2
: int  NA NA NA NA NA NA NA NA NA NA ...

$ pq3
: int  NA NA NA NA NA NA NA NA NA NA ...

$ pq4
: int  NA NA NA NA NA NA NA NA NA NA ...

$ sq1
: int  NA NA NA NA NA NA NA NA NA NA ...

$ sq2
: int  NA NA NA NA NA NA NA NA NA NA ...

$ sq3
: int  NA NA NA NA NA NA NA NA NA NA ...

$ sq4
: int  NA NA NA NA NA NA NA NA NA NA ...

$ caq1
: int  NA NA NA NA NA NA NA NA NA NA ...

$ caq2
: int  NA NA NA NA NA NA NA NA NA NA ...

$ caq3
: int  NA NA NA NA NA NA NA NA NA NA ...

$ caq4
: int  NA NA NA NA NA NA NA NA NA NA ...

$ feq1
: int  NA NA NA NA NA NA NA NA NA NA ...

$ feq2
: int  NA NA NA NA NA NA NA NA NA NA ...

$ feq3
: int  NA NA NA NA NA NA NA NA NA NA ...

$ feq4
: int  NA NA NA NA NA NA NA NA NA NA ...

$ niq1
: int  NA NA NA NA NA NA NA NA NA NA ...

$ niq2
: int  NA NA NA NA NA NA NA NA NA NA ...

$ niq3
: int  NA NA NA NA NA NA NA NA NA NA ...

$ niq4
: int  NA NA NA NA NA NA NA NA NA NA ...

$ cuq1
: int  NA NA NA NA NA NA NA NA NA NA ...

$ cuq2
: int  NA NA NA NA NA NA NA NA NA NA ...

$ cuq3
: int  NA NA NA NA NA NA NA NA NA NA ...

$ cuq4
: int  NA NA NA NA NA NA NA NA NA NA ...

$ znq1
: int  NA NA NA NA NA NA NA NA NA NA ...

$ znq2
: int  NA NA NA NA NA NA NA NA NA NA ...

$ znq3
: int  NA NA NA NA NA NA NA NA NA NA ...

$ znq4
: int  NA NA NA NA NA NA NA NA NA NA ...

$ stdagepill
: num  -0.182 0 0 -1.818 -1.818 ...

$ znquartiles: Factor w/ 4 levels "Q1","Q2","Q3",..: NA NA NA NA NA NA NA NA NA NA ...

$ observed
: num  0 0 0 0 0 0 0 0 0 0 ...

>
> mod <- nested.km(survfitformula =                      
+                                 "Surv(futime01,ec01==1)~znquartiles",

+ samplingmod = "ec01*basehist", exposureofinterest = "Q4",  
+ data = zinc)

Risk Differences vs. znquartiles=Q4 by time 5980


Risk Difference
StdErr
95% CI Left
95% CI Right

Q4 - Q1
0.2817534
0.10416236
0.07759516
0.4859116

Q4 - Q2
0.0555103
0.07565667
-0.09277677
0.2037974

Q4 - Q3
0.1068147
0.08073547
-0.05142680
0.2650562

> summary(mod)

Call: survfit(formula = as.formula(survfitformula), data = data, weights = 1/p.i.h.a.t.,
na.action = na.omit, type = "fl")

308 observations deleted due to missingness
znquartiles=Q1
time
n.risk
n.event
survival
std.err
lower 95% CI
upper 95% CI

163
125.5
1.37
0.989
0.0108
0.925
0.998

1003
120.4
1.57
0.976
0.0169
0.906
0.994

1036
118.8
1.00
0.968
0.0191
0.899
0.990

…………………………………………………………………………………………………

……………………………………………………………………………………………….....
5893
59.8
1.57
0.633
0.0862
0.441
0.775

znquartiles=Q2
time
n.risk
n.event
survival
std.err
lower 95% CI
upper 95% CI

1038
116.9
1.57
0.987
0.0133
0.909
0.998

1064
115.3
4.51
0.949
0.0260
0.864
0.981

1070
110.8
2.33
0.929
0.0324
0.830
0.971

……………………………………………………………………………………………….....
………………………………………………………………………………………………….
4139
63.5
1.37
0.859
0.0520
0.718
0.933

znquartiles=Q3
time
n.risk
n.event
survival
std.err
lower 95% CI
upper 95% CI

318
125.1
1.20
0.990
0.00948
0.934
0.999

733
123.9
1.20
0.981
0.01340
0.926
0.995

1001
122.7
1.37
0.970
0.01759
0.907
0.991

…………………………………………………………………………………………………

…………………………………………………………………………………………………
5351
64.6
1.42
0.808
0.05800
0.662
0.896

znquartiles=Q4
time
n.risk
n.event
survival
std.err
lower 95% CI
upper 95% CI

1037
59.8
1.42
0.977
0.0235
0.840
0.997

4143
44.4
1.42
0.946
0.0388
0.789
0.987

5189
41.1
1.37
0.915
0.0514
0.736
0.975

>

> plot(mod, ymin = 0.6, xlab = "Time in days",
+        ylab = "Survival probabilities",
+        main = "Survival Analysis by Quartile of Zinc",

+        lty = 1:4)

> legend(1000,0.7, c("Q1", "Q2", "Q3", "Q4"), lty=1:4)

> # Outputting: Figure 7.33.
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Figure 7.33 K–M survival analysis curves for cancer survival by each quantile of zinc, standardized for confounders.
(a)
Explain the function of each line of the R code segment for this computation.

ANSWER:

(If necessary, refer to the CRAN website for definitions of terminologies.)

(b)
Rerun the above code segment in the R environment.

ANSWER:

(The foregoing results may be readily obtained.)

(c)
Comment on the resulting plot: Figure 7.33.
ANSWER:

Figure 7.33 is a typical K–M plot for longitudinal survivability data showing the gradual decrease in the survival probabilities as time marches on for varying levels of the zinc quartile. The “+” marks indicate changes in the number of participants, owing to deaths, dropouts, etc.

(d)
In this analysis, how is confounding adjusted?

ANSWER:

The K–M analysis generally does not control for confounding factors (such as the case in which one group may have different demographics than another). To take into account factors owing to confounding, one may consider a Cox regression analysis.

4.
Survival analysis: The CRAN package survivalBIV (BIVariate distribution function)[30] estimates the bivariate distribution function for sequentially ordered events under univariate censoring. This package contains a number of special R functions designed for special applications in survival analysis. Some of these applications are illustrated as follows:

(a)
A conditional Kaplan–Meier (CK–M) estimator: bivCKM()
This function provides estimates for the bivariate distribution function for the CK–M estimator and has a usage formula of the form

bivCKM(object, t1, t2, conf = FALSE, n.boot = 1000,
              conf.level = 0.95, method.boot = "percentile")

with the following arguments:

object
An object of class survBIV.

t1
The first time for obtaining estimates for the bivariate distribution function. If missing, 0 will be used.

t2
The second time for obtaining estimates for the bivariate distribution function. If missing, the maximum of time2 will be used.

conf
Provides point-wise confidence bands. Defaults to FALSE.

n.boot
The number of bootstrap samples. Defaults to 1000 samples.

conf.level
Level of confidence. Defaults to 0.95 (corresponding to 95%).

method.boot
Method used to compute bootstrap confidence intervals. Possible options are "percentile" and "basic". Defaults to "percentile".

The following R code segment illustrates the use of this function when applied to the dataset bladderBIV (contained in the package survivalBIV):
In the R environment:

> install.packages("survivalBIV")

> library(survivalBIV)

Loading required package: prodlim

Loading required package: KernSmooth

KernSmooth 2.23 loaded

Copyright M. P. Wand 1997-2009

> ls("package:survivalBIV")

[1]
"bivCKM"
"bivIPCW"
"bivKMPW"
[4]
"bivKMW"
"bladderBIV"
"corrBIV"
[7]
"dgpBIV"
"is.survBIV"
"plot.survBIV"
[10]
"summary.survBIV"
"survBIV"
> data("bladderBIV")

> bladderBIV_obj <- with(bladderBIV, survBIV(time1, event1,
+ time2, event2))

> bivCKM(object = bladderBIV_obj, t1 = 5, t2 = 20)
0.1920702
> #or
> bladderBIV_obj <- survBIV(bladderBIV$time1,
+                                bladderBIV$event1, bladderBIV$time2,

+                                bladderBIV$event2)

> bivCKM(object = bladderBIV_obj, t1 = 5, t2 = 20,
+              conf = TRUE, conf.level = 0.9)

> + Outputting:

5%
95%
0.1920702
0.1185156
0.2657545
(a)
Explain the function of each line of the R code segment for this computation.

ANSWER:

(If necessary, refer to the CRAN website for definitions of terminologies.)

(b)
Rerun the above code segment in the R environment.

ANSWER:

(The foregoing results may be readily obtained.)

(c)
Comment on the results.

The function bivCKM {survivalBIV}, called the CK–M estimator, provides estimates for the bivariate distribution function for the estimator as follows:

Usage:
bivCKM(object, t1, t2, conf = FALSE, n.boot = 1000,
              conf.level = 0.95, method.boot = "percentile")

Arguments:
object
An object of class survBIV.
t1
The first time for obtaining estimates for the bivariate distribution function. If missing, 0 will be used.

t2
The second time for obtaining estimates for the bivariate distribution function. If missing, the maximum of time2 will be used.

conf
Provides point-wise confidence bands. Defaults to FALSE.

n.boot
The number of bootstrap samples. Defaults to 1000 samples.

conf.level
Level of confidence. Defaults to 0.95 (corresponding to 95%).

method.boot
Method used to compute bootstrap confidence intervals. Possible options are "percentile" and "basic". Defaults to "percentile".

This function provides estimates for the bivariate distribution function for the CK–M estimator.

(d)
Another R function in this package is bivIPCW(), which provides estimates for the bivariate distribution function for the inverse probability of censoring weighted (IPCW) estimator. The following R code segment applies this function to the same dataset bladderBIV:
>

> data("bladderBIV")

> bladderBIV_obj <- with(bladderBIV, survBIV(time1, event1,
+                                         time2, event2))

> bivIPCW(object = bladderBIV_obj, t1 = 5, t2 = 20, 
+                method.cens = "prodlim")

Run this R code segment and comment on the results.

Answer:

In the R environment:

> #or
> bladderBIV_obj <- survBIV(bladderBIV$time1,
+                                 bladderBIV$event1, bladderBIV$time2,

+                                 bladderBIV$event2)

>

> bivIPCW(object = bladderBIV_obj, t1 = 5, t2 = 20,
+                conf = TRUE, conf.level = 0.9,

+                method.boot = "basic")


5%
95%
0.1866335
0.1105516
0.2646384
> data("bladderBIV")

> bladderBIV_obj <- with(bladderBIV, survBIV(time1, event1,

+                                         time2, event2))

> bivKMPW(object = bladderBIV_obj, t1 = 5, t2 = 20)

0.1897386
> #or
> bladderBIV_obj <- survBIV(bladderBIV$time1,
+      bladderBIV$event1, bladderBIV$time2,

+      bladderBIV$event2)

> bivKMPW(object = bladderBIV_obj, t1 = 5, t2 = 20,
+                 conf = TRUE, conf.level = 0.9)


5%
95%
0.1897386
0.1202276
0.2619701
> data("bladderBIV")

> bladderBIV_obj <- with(bladderBIV, survBIV(time1, event1,
+                                         time2, event2))

> bivKMW(object = bladderBIV_obj, t1 = 5, t2 = 20)

0.1921058
>

> #or
> bladderBIV_obj <- survBIV(bladderBIV$time1,
+                                bladderBIV$event1, bladderBIV$time2,

+                                bladderBIV$event2)

> bivKMW(object = bladderBIV_obj, t1 = 5, t2 = 20,
+               conf = TRUE, conf.level = 0.9)


5%
95%
0.1921058
0.1180276
0.2656078
>

> #Example for the bivariate Exponential distribution
> dgpBIV(n = 100, corr = 1, dist = "exponential",
+              model.cens = "uniform",

+ cens.par = 3, dist.par = c(1, 1), to.data.frame = TRUE)



time1
event1
time2
event2

1
0.0005895626
1
0.75564858
1

2
0.6982030278
1
0.23072713
1

3
0.0558737679
1
0.85410701
1

4
0.6485372734
1
0.52543358
0

5
0.6713170423
0
0.00000000
0

6
0.8790889907
1
0.03043959
1

7
0.6068865498
1
0.10316399
1

8
0.0975181995
1
0.95176635
1

9
0.7997097191
0
0.00000000
0

10
0.2697271148
0
0.00000000
0

11
0.4367546837
0
0.00000000
0

12
0.2809143670
1
1.17781751
0

13
1.2135338530
1
0.10468994
1

14
1.4306760170
1
0.56626825
0

15
0.1780562948
0
0.00000000
0

16
0.3228512866
1
0.99409678
0

17
0.3177933234
1
0.99625677
0

18
0.2284733959
1
0.23741045
0

19
0.5274914715
1
0.30927187
1

20
0.2926479652
1
0.87673844
1

21
0.5181994882
1
0.84130949
1

22
1.6557341524
1
0.84904600
0

23
0.2561566898
1
0.02706028
1

24
1.0438891871
1
0.69471175
0

25
0.1166925130
0
0.00000000
0

26
0.2389276870
1
0.93371568
1

27
0.9899928542
1
1.72177471
0

28
0.2674041729
1
0.04035089
1

29
0.0177538705
0
0.00000000
0

30
0.7928811121
1
0.11645234
1

31
0.4532970815
1
0.81096417
1

32
0.9278468457
0
0.00000000
0

33
0.3206757427
1
0.27408256
1

34
0.2955963112
1
0.25176147
0

35
0.4530449047
1
0.12346276
1

36
1.9161922988
0
0.00000000
0

37
0.8300401610
0
0.00000000
0

38
0.2012449917
1
0.25938102
1

39
0.3447902738
1
0.02007339
1

40
0.9947645486
1
0.45997132
0

41
0.2069979079
1
0.28359194
1

42
0.5122642969
0
0.00000000
0

43
0.6378745642
1
0.06128698
1

44
1.9400842474
0
0.00000000
0

45
0.6603214571
0
0.00000000
0

46
0.6634516153
0
0.00000000
0

47
0.1856409729
1
0.23703461
1

48
0.9697090527
0
0.00000000
0

49
0.3939246334
1
0.12125044
0

50
0.0515332760
1
0.07251975
1

51
2.0156175639
0
0.00000000
0

52
1.2559016843
1
0.04350289
0

53
1.3967063204
1
0.18671369
1

54
0.9279630573
1
0.08916433
0

55
0.8164238634
1
0.05462287
1

56
0.0245129673
0
0.00000000
0

57
0.5157781137
1
0.26861503
1

58
0.3728056342
1
0.07303738
0

59
0.6157245501
1
0.41411110
0

60
0.4798975375
1
0.36525051
1

61
0.7601117366
0
0.00000000
0

62
0.4095801464
1
0.87768139
1

63
0.6044178131
1
0.04452789
0

64
0.0403524034
0
0.00000000
0

65
0.8983658056
0
0.00000000
0

66
0.4816842741
1
0.09519841
0

67
0.0310373344
1
0.36791676
1

68
0.9049734917
1
0.26968932
1

69
1.0606460375
1
1.37214910
1

70
0.1874751560
1
0.54789536
1

71
0.2055806991
1
0.94832239
1

72
1.8742257392
0
0.00000000
0

73
2.5159698048
1
0.26259136
1

74
2.6107399651
1
0.01456952
0

75
0.6080606624
0
0.00000000
0

76
2.2104980203
0
0.00000000
0

77
0.6895901640
0
0.00000000
0

78
0.1329671829
0
0.00000000
0

79
0.1822175515
1
0.13577832
1

80
0.6162270399
1
0.31167067
1

81
1.1962075245
0
0.00000000
0

82
1.0517517613
1
0.30542583
0

83
0.2711551202
1
0.93749705
0

84
0.4736238314
1
0.42495908
1

85
0.1668557518
0
0.00000000
0

86
0.4283004184
1
0.13572692
1

87
1.4244481432
1
0.25146951
1

88
0.2768717642
1
0.27988718
1

89
0.0087164905
1
0.03962044
1

90
2.4277168578
0
0.00000000
0

91
0.2097113177
0
0.00000000
0

92
0.0021386391
1
0.16532315
1

93
0.6734751035
1
1.46594482
0

94
1.8577060935
0
0.00000000
0

95
0.1409383491
0
0.00000000
0

96
0.7416686579
1
0.83971735
1

97
2.0469178744
0
0.00000000
0

98
0.5584133468
1
0.58440127
0

99
2.0667516228
1
0.07517950
1

100
0.2160539478
0
0.00000000
0

> #Example for the bivariate Weibull distribution
> dgpBIV(n = 100, corr = 1, dist = "weibull", model.cens =
+ "exponential",

+ cens.par = 0.08, dist.par = c(2, 7, 2, 7))

>

$data

time1
event1
time2
event2
Stime

1
1.388147729
0
0.0000000
0
1.388147729

2
0.743709478
0
0.0000000
0
0.743709478

3
4.311593760
1
2.2516124
0
6.563206116

4
4.470056068
0
0.0000000
0
4.470056068

5
5.997286522
0
0.0000000
0
5.997286522

6
0.005249357
0
0.0000000
0
0.005249357

7
2.609313119
0
0.0000000
0
2.609313119

8
7.146119245
1
0.3176864
0
7.463805680

9
6.447898338
1
5.9024270
1
12.350325305

10
4.169294109
1
4.2948521
1
8.464146250

11
8.247212600
1
4.7068117
0
12.954024341

12
3.595728674
1
6.0022950
1
9.598023643

13
10.117623649
1
3.7784823
0
13.896105950

14
8.209468634
0
0.0000000
0
8.209468634

15
7.006549462
1
9.0528632
1
16.059412663

16
6.835012301
1
2.7363197
0
9.571331956

17
8.472035429
1
3.5261148
0
11.998150183

18
2.849277534
1
8.8820817
1
11.731359253

19
3.051419189
1
6.6459485
1
9.697367718

20
6.553231439
1
0.7711965
1
7.324427896

21
11.004396078
1
6.2054960
1
17.209892032

22
2.567791299
1
7.7498997
0
10.317690996

23
4.204659119
1
10.1619853
1
14.366644423

24
7.360276219
0
0.0000000
0
7.360276219

25
2.734720899
0
0.0000000
0
2.734720899

26
2.904995325
1
6.7961131
1
9.701108398

27
11.153064089
1
1.6165403
1
12.769604432

28
6.035556386
1
1.7032070
1
7.738763414

29
7.222186275
1
7.4833385
1
14.705524741

30
5.468072242
0
0.0000000
0
5.468072242

31
12.965649468
1
3.1403897
1
16.106039130

32
3.061703269
1
0.7260095
0
3.787712725

33
3.751140080
1
9.1630566
0
12.914196669

34
1.680568964
1
3.8075400
0
5.488108939

35
4.353856486
1
6.9240779
1
11.277934414

36
0.572074048
0
0.0000000
0
0.572074048

37
6.673796084
1
5.2544671
1
11.928263191

38
7.689879433
1
7.5970093
1
15.286888712

39
10.583878851
1
2.0478638
0
12.631742695

40
4.089472140
0
0.0000000
0
4.089472140

41
11.093751137
1
0.9952871
0
12.089038279

42
0.756349065
0
0.0000000
0
0.756349065

43
2.838233864
0
0.0000000
0
2.838233864

44
5.285847816
0
0.0000000
0
5.285847816

45
5.899664003
1
5.8729714
1
11.772635387

46
5.924026349
1
1.2014802
1
7.125506594

47
2.294302556
1
5.7817984
1
8.076100916

48
7.228772283
1
0.8191344
0
8.047906647

49
6.849679163
1
4.2819505
1
11.131629712

50
6.960093893
1
6.7772215
0
13.737315346

51
3.703865355
1
13.3599371
1
17.063802422

52
2.978508038
0
0.0000000
0
2.978508038

53
0.632452127
0
0.0000000
0
0.632452127

54
4.437267513
0
0.0000000
0
4.437267513

55
11.433835033
0
0.0000000
0
11.433835033

56
0.026654385
0
0.0000000
0
0.026654385

57
4.366620830
1
4.6884216
1
9.055042468

58
2.086997694
0
0.0000000
0
2.086997694

59
4.386038504
1
4.1407420
0
8.526780544

60
0.166223885
0
0.0000000
0
0.166223885

61
5.881654616
1
4.8989473
1
10.780601869

62
4.387691111
0
0.0000000
0
4.387691111

63
3.327461537
0
0.0000000
0
3.327461537

64
5.439083596
1
5.9484436
1
11.387527240

65
3.043832240
0
0.0000000
0
3.043832240

66
3.866050823
0
0.0000000
0
3.866050823

67
9.206512038
1
1.9021350
1
11.108647010

68
2.077167493
0
0.0000000
0
2.077167493

69
1.169742962
0
0.0000000
0
1.169742962

70
7.836676569
0
0.0000000
0
7.836676569

71
3.094922049
1
7.5165716
1
10.611493699

72
5.456891474
1
3.0843889
0
8.541280357

73
6.777679345
1
1.6365333
1
8.414212682

74
4.037906132
1
6.6897972
1
10.727703306

75
0.513964477
0
0.0000000
0
0.513964477

76
6.690673682
1
1.0181006
1
7.708774302

77
13.279659553
1
13.3269520
1
26.606611569

78
3.841746730
1
4.1038628
1
7.945609505

79
1.444641809
0
0.0000000
0
1.444641809

80
2.937351998
1
2.8168339
0
5.754185881

81
1.223288129
1
6.1965012
1
7.419789348

82
1.275968027
0
0.0000000
0
1.275968027

83
3.611468174
0
0.0000000
0
3.611468174

84
6.549168425
1
1.3645790
1
7.913747386

85
7.801177148
1
3.5133309
1
11.314508024

86
6.137463114
1
16.4784673
1
22.615930434

87
7.846500803
0
0.0000000
0
7.846500803

88
3.163988848
1
9.5916571
1
12.755645964

89
2.120092746
1
6.5040954
1
8.624188137

90
0.664639455
0
0.0000000
0
0.664639455

91
3.582123312
0
0.0000000
0
3.582123312

92
0.886321417
0
0.0000000
0
0.886321417

93
6.554446964
1
0.3444679
0
6.898914900

94
5.485892578
1
2.4127827
1
7.898675250

95
0.434836076
0
0.0000000
0
0.434836076

96
3.084640881
1
3.4676929
0
6.552333769

97
7.621512087
1
12.4836850
1
20.105197113

98
3.049349878
0
0.0000000
0
3.049349878

99
7.862905945
1
9.2293236
1
17.092229502

100
0.869275234
0
0.0000000
0
0.869275234

attr(,"class")

[1] "survBIV"

> 
5.
Plot methods for a survBIV object

The following R code segments provide the plots for the bivariate distribution function and marginal distribution such as those in Exercise 4:
>

> install.packages("survivalBIV")

> library(survivalBIV)

Loading required package: prodlim
Loading required package: KernSmooth
KernSmooth 2.23 loaded

Copyright M. P. Wand 1997-2009

>

> ls("package:survivalBIV")

[1]
"bivC
"bivIPCW"
"bivKMPW"
[4]
"bivKMW"
"bladderBIV"
"corrBIV"
[7]
"dgpBIV"
"is.survBIV"
"plot.survBIV"
[10]
"summary.survBIV"
"survBIV"
>

> data("bladderBIV")

> bladderBIV_obj <- with(bladderBIV, survBIV(time1, event1, 
+                                         time2, event2)

>
> op <- par(mfrow = c(2, 2))

> plot(bladderBIV_obj, plot.marginal = TRUE, method = "CKM")

Waiting to confirm page change...

>

> plot(bladderBIV_obj, plot.marginal = TRUE, method =
+        "IPCW")

>

> plot(bladderBIV_obj, plot.marginal = TRUE, method =
+        "KMPW")

>

> plot(bladderBIV_obj, plot.marginal = TRUE, method =
+        "KMW")

>

> par(op)

> # Outputting: Figure 7.34 survivalBIV-1.
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Figure 7.34 survivalBIV-1.
>

> plot(bladderBIV_obj, plot.marginal = TRUE,
+        plot.bivariate =  TRUE, method = "CKM")

Waiting to confirm page change...

> # Outputting: Figure 7.35  survivalBIV-CKM-1.

Waiting to confirm page change...

> # Outputting: Figure 7.36  survivalBIV-CKM-2.

Waiting to confirm page change...

> # Outputting: Figure 7.37  survivalBIV-CKM-3.

> plot(bladderBIV_obj, plot.bivariate = TRUE, method = "IPCW")

Waiting to confirm page change...

> # Outputting: Figure 7.38  survivalBIV-IPCW-1.

Waiting to confirm page change...

> # Outputting: Figure 7.39  survivalBIV-IPCW-2.

> plot(bladderBIV_obj, plot.persp = TRUE, method = "KMPW")

Waiting to confirm page change...

> # Outputting: Figure 7.40  survivalBIV-KMPW.

> plot(bladderBIV_obj, plot.contour = TRUE, method = "KMW")

Waiting to confirm page change...

> # Outputting: Figure 7.41  survivalBIV-KMW.
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Figure 7.35 survivalBIV-CKM-1.
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Figure 7.36 survivalBIV-CKM-2.
[image: image159.jpg]Time in state 2

CKM

0.1

T
10

T T
20 30

Time in state 1

T
40

T
50

0.0




Figure 7.37 survivalBIV-CKM-3.
[image: image160.jpg]IPCW





Figure 7.38 survivalBIV-IPCW-1.
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Figure 7.39 survivalBIV-IPCW-2.
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Figure 7.40 survivalBIV-KMPW.
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Figure 7.41 survivalBIV-KMW.
Exercises for Section 7.4

____________________________

1.
Logistic regression models are often used for computing a survival curve for longitudinal censored data. The following R code segment computes an estimate of a survival curve for censored data using either the K–M or the Fleming–Harrington method for computing the predicted survivor function.
For competing risks data, it computes the cumulative incidence curve. This calls the survival package’s survfit.formula() function with a different default value for conf.type (log-log basis). Moreover, attributes of the event time variable are saved.

Usage:
survfit(formula, data, ...)

Arguments:
formula
A formula object, which must have a Surv object as the response on the left of the ~ operator and, if needed, terms separated by + operators on the right. One of the terms may be a strata object. For a single survival curve, the right hand side should be ~ 1.

data
A data frame in which to interpret the variables named in the formula, subset and weights arguments.

...
See survfit.formula.
Details:
See survfit.formula for details.
Value:
An object of class "survfit". See survfit.object for details. Methods defined for survfit objects are print, plot, lines, and points.

Author(s):
Thomas Lumley <tlumley@u.washington.edu> and Terry Therneau

See also:
survfit.cph for survival curves from Cox models. print, plot, lines, coxph,Surv, strata.

Examples:
require(survival)

# fit a Kaplan–Meier and plot it

fit <- survfit(Surv(time, status) ~ x, data = aml)

plot(fit, lty = 2:3)

legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3)

# fit a Cox proportional hazards model and plot the predicted survival for a 
# 60-year-old
fit <- coxph(Surv(futime, fustat) ~ age, data = ovarian)

plot(survfit(fit, newdata=data.frame(age=60)),

        xscale=365.25, xlab = "Years", ylab="Survival")

# Here is the dataset from Turnbull

# There are no interval censored subjects, only left-censored (status=3),

# right-censored (status 0) and observed events (status 1)

#

# Time

# 1 2 3 4

# Type of observation

# death 12 6 2 3

# losses 3 2 0 3

# late entry 2 4 2 5

#

tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4),

                                   status=rep(c(1,0,2),4),

                                   n =c(12,3,2,6,2,4,2,0,2,3,3,5))

fit <- survfit(Surv(time, time, status, type=’interval’) ~1,

                   data=tdata, weights=n)

#

# Time to progression/death for patients with monoclonal gammopathy

# Competing risk curves (cumulative incidence)

fit1 <- survfit(Surv(stop, event==’progression’) ~1,  
                     data=mgus1, subset=(start==0))

fit2 <- survfit(Surv(stop, status) ~1, data=mgus1,

                              subset=(start==0), etype=event) #competing risks

# CI curves are always plotted from 0 upwards, rather than 1 down
plot(fit2, fun=’event’, xscale=365.25, xmax=7300,   
        mark.time=FALSE,col=2:3, xlab="Years post diagnosis 
        of MGUS")

lines(fit1, fun=’event’, xscale=365.25, xmax=7300,  
         mark.time=FALSE,conf.int=FALSE)

text(10, .4, "Competing Risk: death", col=3)

text(16, .15,"Competing Risk: progression", col=2)

text(15, .30,"KM:prog")

The following R code segment undertakes the execution of this exercise in the R environment:

>
> install.packages("rms")

Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.14’

(as ‘lib’ is unspecified)

--- Please select a CRAN mirror for use in this session ---

(The USA CA2 CRAN Mirror is selected.)

trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/rms_3.6-3.zip'

Content type 'application/zip' length 933733 bytes (911 Kb)

opened URL

downloaded 911 Kb

package ‘rms’ successfully unpacked and MD5 sums checked

The downloaded packages are in

C:\Users\bertchan\AppData\Local\Temp\RtmpyAfTbf\downloaded_packages

> library(rms)

Loading required package: Hmisc

Loading required package: survival

Loading required package: splines

Hmisc library by Frank E Harrell Jr

Type library(help='Hmisc'), ?Overview, or ?Hmisc.Overview')

to see overall documentation.

NOTE:Hmisc no longer redefines [.factor to drop unused levels when subsetting. To get the old behavior of Hmisc type dropUnusedLevels().

Attaching package: ‘Hmisc’

The following object(s) are masked from ‘package:survival’:

untangle.specials

The following object(s) are masked from ‘package:base’:

format.pval, round.POSIXt, trunc.POSIXt, units

Attaching package: ‘rms’

The following object(s) are masked from ‘package:survival’:

   Surv

> ls("package:rms")
[1]
"%ia%"
[2]
"[.rms"
[3]
"[.Surv"
[4]
"AIC.rms"
[5]
"anova.rms"
……………………….
[205]
"Survival"
……………………......
>
> require(survival)

> #fit a Kaplan-Meier and plot it

> fit <- survfit(Surv(time, status) ~ x, data = aml)

> plot(fit, lty = 2:3)

> legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3)

> # Outputting: Figure 7.44.
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Figure 7.44 Logistic regression, K–M survival plot.
Questions:

(a)
Note the ordinate (vertical axis) of the survival plot. In what way does this plot resemble a probability plot?
ANSWER:

It has the range (0.0–1.0) of a probability scale.

(b)
Note the abscissa (horizontal axis) of the survival plot. What are the units for this axis?

ANSWER:

The units on the abscissa (horizontal axis) of the survival plot are units of time (e.g., days, months, years).

(c)
What other features of this survival plot are characteristic of a typical logistic regression plot?

ANSWER:

The features of this survival plot that are characteristic of a typical logistic regression plot include:

(i)
Consistently decreasing value of the ordinate values of probability, approaching zero probability.

(ii)
The plot for the nonmaintained cases are below (less than) those for the maintained cases, supporting the efficacy of the treatment applied.

(iii)
Both the nonmaintained and the maintained cases approach zero probability, as time progresses.

(d)
Do the two survival graphs on the survival plot intersect? Why or why not?

ANSWER:

Usually these two survival graphs on the survival plot do not intersect, owing to the positive effect of the maintained cases. However, it is possible that these two graphs do intersect when the effect of the maintained option becomes ineffective in the course of the treatment event.
(e)
In the survival plot, the “Maintained” plot is always above the “Nonmaintained” plot, Why?
ANSWER:

It is to be assumed that the maintained cases are reflective of an effective treatment, so the survival probabilities of this cohort are higher that the nonmaintained cohort. Hence the probabilities of the maintained cohort are expected to be greater than the probabilities of the nonmaintained cohort. In such situations, the “Maintained” plot is above the “Nonmaintained” plot.

2.
Validation of predicted probabilities using logistic regression
The function val.prob()
The function val.prob() may be used for validating predicted probabilities against binary events. Given a set of predicted probabilities p, or predicted log odds logit, and a vector of binary outcomes y that were not used in developing the predictions p or logit, the function val.prob() computes the following statistics and indexes:
(i)
Dxy rank correlation between p and y [2(C – 0.5), C=ROC area]. In curve comparison and analysis, the ROC is a metric to compare the diagnostic performance of two or more diagnostic tests. The diagnostic performance of a test, or the accuracy of a test, is its ability to discriminate diseased cases from normal cases. When one considers the results of a particular test in two populations, one population with a disease and the other population without the disease, one will rarely observe a perfect separation between the two groups; the distribution of the test results will most likely overlap.

(ii)
R-squared index.
(iii)
Discrimination index D (logistic model).
(iv)
Unreliability index U.
(v)
χ2 with 2 degrees of freedom, and its p-value.
(vi)
Quality index Q.
(vii)
Brier score (average squared difference in p and y), its intercept, and its slope. Emax = maximum absolute difference in predicted and calibrated probabilities.
(viii)
The Spiegelhalter Z-test for calibration accuracy, and its two-tailed p-value. If pl = TRUE, the program plots a fitted logistic calibration curve and optionally a smooth nonparametric fit using lowess (p,y,iter=0) and grouped proportions versus mean predicted probability in a group. If the predicted probabilities or logits are constant, the statistics are returned and no plot is produced.

Examples:
# Fit logistic model on 100 observations simulated from the actual model given by
# Prob(Y=1 given X1, X2, X3) = 1/(1+exp[-(-1 + 2X1)]),

# where X1 is a random uniform [0,1] variable. Hence X2 and X3 are irrelevant. After 
# fitting a linear additive model in X1, X2, and X3, the coefficients are used to 
# predict Prob(Y=1) on a separate sample of 100 observations. Note that data
# splitting is an inefficient validation method unless n > 20,000.

> set.seed(1)

> n <- 200

> x1 <- runif(n)

> x2 <- runif(n)

> x3 <- runif(n)

> logit <- 2*(x1-.5)

> P <- 1/(1+exp(-logit))

> y <- ifelse(runif(n)<=P, 1, 0)

> d <- data.frame(x1,x2,x3,y)

> f <- lrm(y ~ x1 + x2 + x3, subset=1:100)

> pred.logit <- predict(f, d[101:200,])

> phat <- 1/(1+exp(-pred.logit))
> val.prob(phat, y[101:200], m=20, cex=.5)
> # subgroups of 20 obs.

> # Validate predictions more stringently by stratifying on
> # whether x1 is above or below the median

> v <- val.prob(phat, y[101:200], group=x1[101:200],
+                       g.group=2)

> v

> plot(v)

> plot(v, flag=function(stats) ifelse(

+ stats[,’ChiSq2’] > qchisq(.95,2) |

+ stats[,’B ChiSq’] > qchisq(.95,1), ’*’, ’ ’) )

# Stars rows of statistics in plot corresponding to significant miscalibration at the 
# 0.05 level instead of the default, 0.01
> plot(val.prob(phat, y[101:200], group=x1[101:200],
+                        g.group=2), col=1:3) # 3 colors (1 for overall)

# Weighted calibration curves

# plot(val.prob(pred, y, group=age, weights=freqs)

# Fit logistic model on 100 observations simulated from the# actual model given by
# Prob(Y=1 given X1, X2, X3) = 1/(1+exp[-(-1 + 2X1)]),

# where X1 is a random uniform [0,1] variable. Hence X2 and X3 are irrelevant. After 
# fitting a linear additive model in X1, X2, and X3, the coefficients are used to 
# predict Prob(Y=1) on a separate sample of 100 observations. Note that data 
# splitting is an inefficient validation method unless n > 20,000.
> set.seed(1)

> n <- 200

> x1 <- runif(n)

> x2 <- runif(n)

> x3 <- runif(n)

> logit <- 2*(x1-.5)

> P <- 1/(1+exp(-logit))

> y <- ifelse(runif(n)<=P, 1, 0)

> d <- data.frame(x1,x2,x3,y)

> f <- lrm(y ~ x1 + x2 + x3, subset=1:100)

> pred.logit <- predict(f, d[101:200,])

> phat <- 1/(1+exp(-pred.logit))

> val.prob(phat, y[101:200], m=20, cex=.5)
# subgroups of 20 obs.

The following R code segment undertakes the execution of this exercise:

# Fit logistic model on 100 observations simulated from the actual model given by
# Prob(Y=1 given X1, X2, X3) = 1/(1+exp[-(-1 + 2X1)]),

# where X1 is a random uniform [0,1] variable. Hence X2 and X3 are irrelevant. 
# After fitting a linear additive model in X1, X2, and X3, the coefficients are used to 
# predict Prob(Y=1) on a separate sample of 100 observations. Note that data 
# splitting is an inefficient validation method unless n > 20,000.

In the R environment:

> set.seed(1)

> n <- 200

> x1 <- runif(n)

> x2 <- runif(n)

> x3 <- runif(n)

> logit <- 2*(x1-.5)

> P <- 1/(1+exp(-logit))

> y <- ifelse(runif(n)<=P, 1, 0)

> d <- data.frame(x1,x2,x3,y)

> f <- lrm(y ~ x1 + x2 + x3, subset=1:100)

> pred.logit <- predict(f, d[101:200,])

> phat <- 1/(1+exp(-pred.logit))

> val.prob(phat, y[101:200], m=20, cex=.5) # subgroups of 20 obs.
>

> # Validate predictions more stringently by stratifying on whether x1 is above or 
> # below the median
> v <- val.prob(phat, y[101:200], group=x1[101:200],
+                         g.group=2)

> v

> plot(val.prob(phat, y[101:200], group=x1[101:200],
+ g.group=2), col=1:3) # 3 colors (1 for overall)

# Weighted calibration curves

# plot(val.prob(pred, y, group=age, weights=freqs)) val.

>

> # Fit logistic model on 100 observations simulated from the actual model given by 
> # Prob(Y=1 given X1, X2, X3) = 1/(1+exp[-(-1 + 2X1)]),
> # where X1 is a random uniform [0,1] variable. Hence X2 and X3 are irrelevant. 
> # After fitting a linear additive model in X1, X2, and X3, the coefficients are used 
> # to predict Prob(Y=1) on a separate sample of 100 observations. Note that data
> # splitting is an inefficient validation method unless n > 20,000.
> set.seed(1)

> n <- 200

> x1 <- runif(n)

> x2 <- runif(n)

> x3 <- runif(n)

> logit <- 2*(x1-.5)

> P <- 1/(1+exp(-logit))

> y <- ifelse(runif(n)<=P, 1, 0)

> d <- data.frame(x1,x2,x3,y)

> f <- lrm(y ~ x1 + x2 + x3, subset=1:100)

> pred.logit <- predict(f, d[101:200,])

> phat <- 1/(1+exp(-pred.logit))

> val.prob(phat, y[101:200], m=20, cex=.5) # subgroups of
+ 20
> obs

> # Outputting:

Dxy
C (ROC)
R2
D
D:Chi-sq
D:p

0.320528211
0.660264106
0.094994525
0.063901031
7.390103054
0.006558373

U
U:Chi-sq
U:p
Q
Brier
Intercept
-0.019128530
0.087146981
0.957362194
0.083029561
0.231896346
0.052287214

Slope
Emax
S:z
S:p
Eavg

0.956517813
0.019247505
0.144009939
0.885492622
0.025838218
> # Validate predictions more stringently by stratifying on whether x1 is above or 
> # below the median
> v <- val.prob(phat, y[101:200], group=x1[101:200],
+                         g.group=2)

> v

> # Outputting:

n
Pavg
Obs
ChiSq
ChiSq2
Eavg
Eavg/P90
Med OR
C
B

[0.0131,0.526)
50
0.364
0.36
0.004
0.149
0.046
0.170
1.228
0.637
0.220

[0.5260,0.993]
50
0.590
0.62
0.195
1.902
0.058
0.213
1.083
0.514
0.244

Overall
100
0.477
0.49
0.073
0.088
0.026
0.065
1.084
0.660
0.232


B ChiSq
B cal
[0.0131,0.526)
0.073
0.212

[0.5260,0.993]
0.327
0.230

Overall
0.021
0.230

Quantiles of Predicted Probabilities


0.01
0.025
0.05
0.1
0.25
0.5
0.75
0.9
0.95
0.975

[0.0131,0.526)
0.213
0.222
0.242
0.270
0.301
0.364
0.407
0.471
0.516
0.531

[0.5260,0.993]
0.397
0.411
0.444
0.488
0.535
0.601
0.650
0.668
0.715
0.748

Overall
0.216
0.243
0.271
0.292
0.365
0.479
0.598
0.654
0.668
0.714


0.99

[0.0131,0.526)
0.545

[0.5260,0.993]
0.764

Overall
0.750

> plot(v)

> # Outputting:
Group
[0.0131,0.526)
[0.5260,0.993]
Overall
n
50
50
100
Pavg
0.364
0.590
0.477
Obs
0.36
0.62
0.49
ChiSq
0.0
0.2
0.1
ChiSq2
0.1
1.9
0.1
Eavg
0.046
0.058
0.026
Eavg/P90
0.170
0.213
0.065
Med OR
1.228
1.083
1.084
C
0.637
0.514
0.660
B
0.220
0.244
0.232
B ChiSq
0.1
0.3
0.0
B cal
0.212
0.230
0.230
> # Outputting: Figure 7.45
> # Stars rows of statistics in plot corresponding to significant miscalibration at the 
> # 0.05 level instead of the default, 0.01
> plot(val.prob(phat, y[101:200], group=x1[101:200],
+         g.group=2),

+         col=1:3) # 3 colors (1 for overall)

> # Outputting:
Group
[0.0131,0.526)
[0.5260,0.993]
Overall
n
50
50
100
Pavg
0.364
0.590
0.477
Obs
0.36
0.62
0.49
ChiSq
0.0
0.2
0.1
ChiSq2
0.1
1.9
0.1
Eavg
0.046
0.058
0.026
Eavg/P90
0.170
0.213
0.065
Med OR
1.228
1.083
1.084
C
0.637
0.514
0.660
B
0.220
0.244
0.232
B ChiSq
0.1
0.3
0.0
B cal
0.212
0.230
0.230
> # Outputting: Figure 7.46
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Figure 7.45 Logistic regression: validating predicted probabilities.
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Figure 7.46 Logistic regression: validating predicted probabilities.
Questions:

(a)
The statement of this exercise indicated that eight criteria are computed by this methodology of using logistic regression to validate predicted probabilities. Review each of these eight criteria (start by searching the Internet for “Dxy rank correlation”). Rank these eight criteria, starting with the most effective criterion, and give reasons for your ranking.

ANSWER:

The eight criteria for validating predicted probabilities are:

(i)
Dxy rank correlation between p and y [2(C – 0.5), C=ROC area]. In curve comparison and analysis, the ROC is a metric to compare the diagnostic performance of two or more diagnostic tests. The diagnostic performance of a test, or the accuracy of a test, is its ability to discriminate diseased cases from normal cases. When one considers the results of a particular test in two populations, one population with a disease and the other population without the disease, one will rarely observe a perfect separation between the two groups; the distribution of the test results will most likely overlap.

Somers’ Dxy plays a central role in rank statistics, is the parameter behind most of these “nonparametric" methods, and can be estimated with confidence limits like other parameters. It may be generalized to sampling probability weighted and/or clustered and/or possibly censored data. However, many nonstatisticians appear to have a problem interpreting Somers’ Dxy, even though a difference between proportions is arguably a simpler concept than an odds ratio, which many of them claim to understand better. Parameters are often easier to understand if they play a specific role in a specific model. Fortunately, in a number of simple standard models, Somers’ Dxy can be derived from another parameter by a transformation. A confidence interval for Somers’ Dxy can therefore be transformed, using inverse end-point transformation, to give a robust, outlier (resistant confidence interval for the other parameter), assuming that the model is true.

(ii)
R-squared index: In biostatistics, the coefficient of determination, denoted R2 or r2 and pronounced R squared, is a number that indicates how well data fit a statistical model, sometimes simply a line or a curve. It is a statistic used in the context of statistical models whose main purpose is either the prediction of future outcomes or the testing of hypotheses, on the basis of other related information. It provides a measure of how well observed outcomes are replicated by the model, as the proportion of total variation of outcomes explained by the model.

(iii)
The discrimination index D (logistic model) is computed from equal-sized high and low scoring groups on the test. Subtract the number of successes by the low group on the item from the number of successes by the high group, and divide this difference by the size of a group. The range of this index is +1 to –1.
(iv)
The unreliability index U is given by
Difference in –2log(likelihood between U calibrated XB and XB with overall quality index Q) = D – in

where XB = linear regression of data and D = discrimination index.
(v)
χ2 with 2 degrees of freedom, and its p-value.
Pearson’s chi-squared test is used to assess two types of comparison: tests of goodness of fit and tests of independence.


[image: image167]
A test of goodness of fit establishes whether an observed frequency distribution differs from a theoretical distribution.


[image: image168]
A test of independence assesses whether unpaired observations on two variables, expressed in a contingency table, are independent of each other (e.g., polling responses from people of different nationalities to see if one’s nationality is related to the response).

The procedure of the test includes the following steps:

1.
Calculate the chi-squared test statistic, χ, which resembles a normalized sum of squared deviations between observed and theoretical frequencies (see below).

2.
Determine the degrees of freedom, df, of that statistic, which is essentially the number of categories reduced by the number of parameters of the fitted distribution.

3.
Select a desired level of confidence (significance level, p-value, or alpha level) for the result of the test.

4.
Compare χ to the critical value from the chi-squared distribution with df degrees of freedom and the selected confidence level (one-sided, as the test is only in one direction; i.e., is the test value greater than the critical value?), which in many cases gives a good approximation of the distribution of χ.

5.
Accept or reject the null hypothesis that the observed frequency distribution is different from the theoretical distribution based on whether the test statistic exceeds the critical value of χ. If the test statistic exceeds the critical value of χ, the null hypothesis (H0 = there is no difference between the distributions); the null hypothesis can be rejected with the selected level of confidence and the alternative hypothesis (H1 = there is a difference between the distributions) can be accepted with the selected level of confidence.

(vi)
Quality index Q
Another interesting model is the following:

log P = 4.1639 + 0.0048 W

n =16, r = 0.9703, sy = 0.8434, Q = 1.1505
In 1994, a quality index Q for regression was defined as: Q = R/sy where R and sy are the measures of goodness of fit.

It may be demonstrated that it is based on a very doubtful statistics. In effect, the Q index is related to a modified F test, which takes into account only the degrees of freedom of the model residual sum of squares.

Moreover, Q also depends on the total sum of squares (TSS), which is constant for a given response. However, if the measure unit of the response is changed (e.g., multiplied by 10), the TSS value will increase 100 times and the quality decreases consequently. On the contrary, if the response is divided by 10, the quality increases proportionally. 
(7)
Brier score (average squared difference in p and y), its intercept, and its slope

The Brier score is a proper score function that measures the accuracy of probabilistic predictions. It is applicable to tasks in which predictions must assign probabilities to a set of mutually exclusive discrete outcomes. The set of possible outcomes can be either binary or categorical in nature, and the probabilities assigned to this set of outcomes must sum to one (where each individual probability is in the range of 0 to 1). It was proposed by Glenn W. Brier in 1950.
The Brier score can be thought of either as a measure of the “calibration” of a set of probabilistic predictions or as a “cost function.” More precisely, across all items i 
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1, ..., N in a set N predictions, the Brier score measures the mean squared difference between:
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The predicted probability assigned to the possible outcomes for item i

[image: image171]
The actual outcome Oi
Therefore, the lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score, in its most common formulation, takes on a value between 0 and 1, as this is the largest possible difference between a predicted probability (which must be between 0 and 1) and the actual outcome (which can take on values of only 0 and 1). In the original (1950) formulation of the Brier score, the range is double, from 0 to 2.

The Brier score is appropriate for binary and categorical outcomes that can be structured as true or false, but is inappropriate for ordinal variables, which can take on three or more values (this is because the Brier score assumes that all possible outcomes are equivalently “distant” from one another).

Emax = Maximum absolute difference in predicted and calibrated
probabilities

(8)
The Spiegelhalter Z-test for calibration accuracy, and its two-tailed p-value. If pl = TRUE, the program plots a fitted logistic calibration curve and optionally a smooth nonparametric fit using lowess (p,y,iter=0) and grouped proportions versus mean predicted probability in a group. If the predicted probabilities or logits are constant, the statistics are returned and no plot is produced.

The specific and special applicability of these eight criteria for validating predicted probabilities may readily be determined by the particular definition that defines each of them, especially when some of them are specifically defined for restricted applications.

(b)
In Figures 7.44 and 7.45, if the predicted probabilities are the same as the actual probabilities, then the predicted data points/lines would all be on the diagonal (45 degree) line. Comment on the accuracy of the computed predicted probabilities.

ANSWER:

Clearly, the predicted and actual probabilities are close to the diagonal line around p = 0.5. Thus the accuracy of the computed predicted probabilities become less accurate for probability values when the probability values are farther removed from the p = 0.5 values.
(c)
In both plots, it appears that the predictions are more accurate around the middle section, where the probability is at about 0.5. Comment on this feature of the logistic regression model as a predictive tool.

ANSWER:

The logistic regression model is more accurate when predicting probability values close to p = 0.5, but less accurate when p is farther from p = 0.5.

(d)
Provide a rationale for the application of the logistic regression model as a statistical tool for prediction of successes (and failures) in applied probability problems in biostatistics and epidemiology.

ANSWER:

As seen above, having defined residuals for logistic regression, one may form the usual R2 statistic, although it is rarely used. It is almost always rather low, as observed values need to be either 0 or 1, but predicted values are always in between these extremes.

3.
Quasi-likelihood estimation

In fitting generalized models with Poisson or binomial error distributions, by comparing the residual deviance with its degrees of freedom, it is possible to detect overdispersion. The two quantities should be approximately equal for a well-fitting model.

When the deviance is far larger than the degrees of freedom, it may be an indication of overdispersion. 
Logistic Regression for Predicting a Binary-Valued Variable.

To deal with possible overdispersion, recourse may be had to apply the quasi-likelihood procedure, which permits the estimation of the model  parameters without a full knowledge of the error distribution of the response variable. The procedure may allow for the calculation of φ from the data (rather assuming it to be unity for the Poisson and binomial distributions).

Applying the quasi-likelihood estimation to the colonic polyps data polyps3, the following r code segments may be used;

> install.packages("HSAUR")

> library(HSAUR)

> ls("package:HSAUR")

> polyps3

> polyps3_GLM_Quasi <- glm(number3m ~ treatment + age,

+ data = polyps3, family = quasipoisson() )
> summary(polyps3_GLM_Quasi)

> # Outputting:
Call:

glm(formula = number3m ~ treatment + age, family = quasipoisson(),
       data = polyps3)

Deviance Residuals:

Min
1Q
Median
3Q
Max
-11.3117

-5.0824
-2.7838
-0.4611
22.4333
Coefficients:


Estimate
Std. Error
t value
Pr(>|t|)
(Intercept)
5.72284
1.16148
4.927
9.36e-05***

treatmentactive
-1.19595
0.74361
-1.608
0.124
age
-0.07243
0.05145
-1.408
0.175
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for quasipoisson family taken to be 91.14169)

Null deviance: 1603.1 on 21 degrees of freedom

Residual deviance: 1191.6 on 19 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 6

>

Questions:

(a)
Compare the regression coefficients for both explanatory variables: treatment and age.
ANSWER:

From the output of the R computation:

Coefficients:


Estimate
Std. Error
t value
Pr(>|t|)
(Intercept)
5.72284
1.16148
4.927
9.36e-05***

treatmentactive
-1.19595
0.74361
-1.608
0.124
age
-0.07243
0.05145
-1.408
0.175
(b)
What are their values?
ANSWER:

The computed regression coefficients for treatment and age are: 

Estimate
Std. Error
t value
Pr(>|t|)
(Intercept)
5.72284
1.16148
4.927
9.36e-05***

treatmentactive
-1.19595
0.74361
-1.608
0.124
age
-0.07243
0.05145
-1.408
0.175
(c)
Is each value significant?

ANSWER:

Yes.

(d)
Compare the estimated standard errors for both explanatory variables: treatment (0.74316) and age (0.05145), with the previously calculated values for simple Poisson distribution: treatment (0.077891) and age (0.005389)

ANSWER:

The estimated standard errors for logistic regression is an order of magnitude (10 times) greater than those calculated for the Poisson distribution regression.
(e)
It is evident that the dispersion for the quasi-likelihood case is much larger. Why?

ANSWER:

The dispersion for the quasi-likelihood case is much larger because it measures the actual values of the data, whereas the logarithms of these data values have much smaller dispersions.
(f)
An explanation suggested for such overdispersion in the data is that colonic polyps may occur in clusters (i.e., they do not occur independently). Comment on this suggestion.

ANSWER:

This is a definite possibility. A plot of the primary data will indicate whether these clusters do occur. One may average these cluster values and proceed to study the dispersions of these clusters to obtain an improved estimate of the dispersions of these clusters and provide an improved estimate of the properties of the dataset.

4.
The functions predict() and predict.glm()
A useful biostatistical tool, based on logistic regression, is the function predict(), which has several variations, including the function predict.glm().

These are documented in the CNRS package stats.

Each of these R functions may be used to compute predictions and to estimate standard errors, etc., of the predictions from a fitted generalized linear model object.
Usage:
predict(object, newdata = NULL,

              type = c("link", "response", "terms"),

              se.fit = FALSE, dispersion = NULL, terms = NULL,

              na.action = na.pass, ...)

Arguments

object
A fitted object of class inheriting from "glm".

newdata
Optionally, a data frame in which to look for variables with which to predict.
type
The type of prediction required. The default is on the scale of the linear predictors; the alternative "response" is on the scale of the response variable.
se.fit
Logical switch indicating if standard errors are required.

dispersion
The dispersion of the GLM fit to be assumed in computing the standard errors. If omitted, the result returned by summary applied to the object is used.

terms
With type="terms", by default all terms are returned. A character vector specifies which terms are to be returned.

na.action
Function determining what should be done with missing values in newdata. The default is to predict NA.

...
Further arguments passed to or from other methods.

Value

If se = FALSE, a vector or matrix of predictions.
If se = TRUE, a list with components.
fit
Predictions.
se.fit
Estimated standard errors.
residual.scale
A scalar giving the square root of the dispersion used in computing the standard errors.

glm, SafePrediction
Examples:
require(graphics)

## example from Venables and Ripley (2002, pp. 190-192)

ldose <- rep(0:5, 2)

numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)

sex <- factor(rep(c("M", "F"), c(6, 6)))

SF <- cbind(numdead, numalive=20-numdead)

budworm.lg <- glm(SF ~ sex*ldose, family=binomial)

summary(budworm.lg)

plot(c(1,32), c(0,1), type = "n", xlab = "dose",

        ylab = "prob", log = "x")

text(2^ldose, numdead/20, as.character(sex))

ld <- seq(0, 5, 0.1)

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

         sex=factor(rep("M", length(ld)), levels=levels(sex))),

         type = "response"))

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

         sex=factor(rep("F", length(ld)), levels=levels(sex))),

         type = "response"))

The following R code segment undertakes the execution of this example exercise:

>
> require(graphics)

>
> ## example from Venables and Ripley (2002, pp. 190-192)

> ldose <- rep(0:5, 2)

> numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)

> sex <- factor(rep(c("M", "F"), c(6, 6)))

> SF <- cbind(numdead, numalive=20-numdead)

> budworm.lg <- glm(SF ~ sex*ldose, family=binomial)

> summary(budworm.lg)

Call:

glm(formula = SF ~ sex * ldose, family = binomial)

Deviance Residuals:

Min
1Q
Median
3Q
Max
-1.39849

-0.32094
-0.07592
0.38220
1.10375
Coefficients:


Estimate
Std. Error
z value
Pr(>|z|)
(Intercept)
-2.9935
0.5527
-5.416
6.09e-08***

sexM
0.1750
0.7783
0.225
0.822
ldose
0.9060
0.1671
5.422
5.89e-08***

sexM:ldose
0.3529
0.2700
1.307
0.191
---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)


Null deviance:
124.8756
on
11
degrees of freedom

Residual deviance:

4.9937
on
8
degrees of freedom

AIC: 43.104

Number of Fisher Scoring iterations: 4

>
> # Preparing the graph and the labels on the two axes
> plot(c(1,32), c(0,1), type = "n", xlab = "dose",

+                                                     ylab = "prob", log = "x")

> text(2^ldose, numdead/20, as.character(sex))

> ld <- seq(0, 5, 0.1)

>

> # Drawing the predict() line for males
> lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

+    sex=factor(rep("M", length(ld)), levels=levels(sex))),

+    type = "response"))

>

># Drawing the predict() line for females
> lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

+         sex=factor(rep("F", length(ld)), levels=levels(sex))),

+         type = "response"))

>

> # Outputting: Figure 7.47  predict()

>
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Figure 7.47 predict().
Questions:

(a)
In this program, when using the function predict(), at what stage is the linear regression function glm() introduced?
ANSWER:

The regression function glm() was introduced during the following stage of using the function predict() in the preceding R computation environment:

> budworm.lg <- glm(SF ~ sex*ldose, family=binomial)

> summary(budworm.lg)

Call:

glm(formula = SF ~ sex * ldose, family = binomial)

Deviance Residuals:

Min
1Q
Median
3Q
Max
-1.39849

-0.32094
-0.07592
0.38220
1.10375
Coefficients:


Estimate
Std. Error
z value
Pr(>|z|)
(Intercept)
-2.9935
0.5527
-5.416
6.09e-08***

sexM
0.1750
0.7783
0.225
0.822
ldose
0.9060
0.1671
5.422
5.89e-08***

sexM:ldose
0.3529
0.2700
1.307
0.191
---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)


Null deviance:
124.8756
on
11
degrees of freedom

Residual deviance:

4.9937
on
8
degrees of freedom

AIC: 43.104

Number of Fisher Scoring iterations: 4

>
(b)
What is the link function used in the model? Is this a good choice? Why?
ANSWER:

The link function used in the model is glm(). It is a good choice. It is usually the first choice, assuming a generalized linear relationship between the dependent and the various independent variables. More complicated nonlinear models may be used if the need arises.

(c)
How and when was the link function introduced into the model computation?
ANSWER:

The regression function glm() was introduced during the following stage of using the function predict() in the preceding R computation environment:

> budworm.lg <- glm(SF ~ sex*ldose, family=binomial)

(d)
Comment on the magnitudes and significances of the standard errors of the dependent variables for the regression.

ANSWER:

The computed results show the following statistical errors:

Coefficients:


Estimate
Std. Error
z value
Pr(>|z|)
(Intercept)
-2.9935
0.5527
-5.416
6.09e-08***

sexM
0.1750
0.7783
0.225
0.822
ldose
0.9060
0.1671
5.422
5.89e-08***

sexM:ldose
0.3529
0.2700
1.307
0.191
---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)


Null deviance:
124.8756
on
11
degrees of freedom

Residual deviance:

4.9937
on
8
degrees of freedom

AIC: 43.104

Number of Fisher Scoring iterations: 4

Low error probabilities are evident, showing that the correlation was satisfactory.

(e)
Suggest an effective approach to ascertain these errors.
ANSWER:

One may attempt to correlate the data with some nonlinear models to obtain improved error limits and probabilities.

5.
Logistic regression in survival analysis:
Chronic granulomatous disease (cgd) infection data
In survival analysis, the K–M procedure is used to estimate the probability of surviving for a given duration of time. The computations consist of the calculations of proportions of case subjects in a sample who survive for various durations of time. Then these sample proportions are used as estimates of the probabilities of survival that one would expect to observe in the type of population represented by the test sample. In mathematical statistics, this approach is known as a nonparametric technique, in contrast to the common link functions (in which Poisson, binomial, or other probabilities are assumed) used in a basic logistic regression.

The cgd dataset in Fleming and Harrington (1991) is from a placebo-controlled randomized trial of gamma interferon in chronic granulomatous disease. From 13 hospitals, a total of 128 case subjects were followed for about a year. The number of subjects per hospital ranged from 4 to 26. Each may experience more than one infection. The survival times (times to event) are the times between recurrent CGD infections in each patient (i.e., gap times). Censoring occurred at the last observation for all patients, except one, who experienced a serious infection on the date that the case subject left the study.
Usage:
data(cgd)

Format:
The CGD dataset contains 15 columns and 203 rows. A brief description of the data columns is given below.
id
Patient number for 128 case subjects.

center
Enrolling center number for 13 hospitals.

random
Date of randomization.

treat
Gamma-interferon treatment(rIFN-g) or placebo(placebo).

sex
Sex of each case subject (male, female).

age
Age of each case subject at study entry, in years.

height
Height of each case subject at study entry, in centimeters.

weight
Weight of each case subject at study entry, in kilograms.

inherit
Pattern of inheritance (autosomal recessive, X-linked).

steroids
Using corticosteroids at times of study entry (1=Yes, 0=No).

proylac
Using prophylactic antibiotics at time of study entry (1=Yes, 0=No).

hos.cat
A categorization of the hospital region into four groups.

tstart
Start of each time interval.

enum
Sequence number. For each patient, the infection records are in sequence number order.

tstop
End of each time interval.

status
Censoring indicator (1=uncensored, 0=censored).

References:
Fleming, T. R., & Harrington, D. R. (1991). Counting processes and survival analysis. New York, NY: Wiley.
Therneasu, T. (2012). survival: Survival analysis, including penalised likelihood. Retrieved from http://CRAN.R-project.org/package=survival (R package version 2.36-14).
The following R code segment undertakes the execution of this example exercise:

>
> install.packages("packHV")

> library(packHV)

Loading required package: WriteXLS

> ls("package:packHV")

[1] "compare"          "convert_factor"   "convert_zero_NA"  "desc"           
[5] "hist_boxplot"     "IC_OR_glm"       "IC_RR_coxph"     c "multi.table"    
[9] "plot_km"           c "plot_mm"          "plot_multi.table" ccc"plot_reg"       
> IC_OR_glm

(Output Omitted)

> cgd

> # Outputting:

id
center
random
treat
sex
age
height
weight

1
1
Scripps Institute
1989-06-07
rIFN-g
female
12
147.0
62.0

2
1
Scripps Institute
1989-06-07
rIFN-g
female
12
147.0
62.0

3
1
Scripps Institute
1989-06-07
rIFN-g
female
12
147.0
62.0

…………………………………………………………………………………………………….........
203
135
Scripps Institute
1989-12-29
placebo
female
3
96.0
13.1


inherit
steroids
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>

> cgd$time=cgd$tstop-cgd$tstart

> plot_km(Surv(time,status)~sex, data=cgd, lwd=2,

+               col=c("black","red"))

> # Outputting: Figure 7.48
[image: image173.jpg]1.0

©
g
©
Loe|
]
=z
=
S
@
el
s L+
o~
o
p=0.357
o
= T T T T
0 100 200 300 400
time
# at risk
male 168 110 85 38 2
female 35 26 20 8 0




Figure 7.48 Logistic regression: survival analysis of cgd data. Plots: male (lower curve), female (upper curve).
Questions:

(a)
In survival analysis, what is the link function used in resultant logistic regression?

ANSWER:

In this case, the link function used is: Surv(time,status).

(b)
Looking at Figure 7.48, what may be concluded regarding the link functions for the two populations: male and female case subjects?

ANSWER:

It appears that both link functions are step-wise exponentially decaying functions.
(c)
If the “steps” of the survival curves were to be “smoothed out,” what type of link functions may be expected?
ANSWER:

It appears that both link functions are exponentially decaying functions.
(d)
Again, in Figure 7.48, the red curve (for female case subjects) lies above the black curve (for male case subjects). How/what does this characteristic reflect on the survival probabilities of these two cohorts?

ANSWER:

It appears that both curves are exponentially decaying functions, with the female case subjects consistently having greater probabilities of survival than the male case subjects
(e)
As both curves show a decreasing slope with respect to time, what family of probability distribution curves may be used to model the survival process?
ANSWER:
To model this survival process, it appears any probability distribution function with an exponentially decaying factor may be applicable, such as the Poisson distribution curves.
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Some Typical Biostatistical Examples Using R in Epidemiologic Investigations, in Public Health, and in Preventive Medicine Practices
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____________________________
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To identify some typical biostatistical challenges and resolutions
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To understand some of the relevant commentary remarks on biostatistics for epidemiologic and public health using R
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To identify some of the critical relationships between R programming and software development

An existence theorem for the system whose governing equations, as given by Equations (RT-8A) and (RT-8B)

∂a/∂t = ∂2a/∂x2 – ab
(RT-8A)

∂b/∂t = R∂2b/∂x2 – m ab
(RT-8B)
may be readily derived by:

(a)
Assuming series finite difference expansions of the terms a and b, then

(b)
Substituting these expansions representations into Equations (RT-8A) and (RT-8B), and finally

(c)
Examining the coefficients that form a system of linear differential equations, whose existence is well known

In this book, the existence of the solutions for the system has been established by actually obtaining numerical solutions of the system in parametric form.
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Online Support for R
A. Biostatistical Computing Using R
____________________________

Start with http://www.r-project.org
R is a software suitable for biostatistical computing and graphic illustrations. It may be compiled and run in many commonly available platforms, including Windows, Mac, and UNIX.

To Get Started
To download R, choose a preferred Comprehensive R Archive Network (CRAN) Mirror, where R support may readily be found. CRAN is available at the following URLs, so choose a location close to your place of operation.
For example in the United States, CRAN Mirrors are located at:

http://cran.cnr.Berkeley.edu/    University of California, Berkeley, CA

http://cran.stat.ucla.edu/    University of California, Los Angeles, CA

http://mirror.las.iastate.edu/CRAN/    Iowa State University, Ames, IA

http://ftp.ussg.iu.edu/CRAN/    Indiana University, Bloomington, IN

http://rweb.quant.ku.edu/cran/    University of Kansas, Lawrence, KS

http://watson.nci.nih.gov/cran_mirror/    National Cancer Institute, Bethesda, MD

http://cran.mtu.edu/    Michigan Technological University, Houghton, MI

http://www.go-parts.com/mirrors-usa/cran/    Go-Parts

http://cran.wustl.edu/    Washington University, St. Louis, MO

http://cran.case.edu/    Case Western Reserve University, Cleveland, OH

http://iis.stat.wright.edu/CRAN/    Wright State University, Dayton, OH

http://ftp.osuosl.org/pub/cran/    Oregon State University, Corvallis, OR

http://lib.stat.cmu.edu/R/CRAN/    Statlib, Carnegie Mellon University, Pittsburgh, PA

http://cran.mirrors.hoobly.com/    Hoobly Classifieds, Pittsburgh, PA

http://mirrors.nics.utk.edu/cran/    National Institute for Computational Sciences, Oak Ridge, TN

http://cran.revolutionanalytics.com/    Revolution Analytics, Dallas, TX

http://cran.fhcrc.org/    Fred Hutchinson Cancer Research Center, Seattle, WA

http://cran.cs.wwu.edu/    Western Washington University, Bellingham, WA

B. Mailing Lists

____________________________

For questions about R, such as how to download and install the software, read the answers to Frequently Asked Questions first before sending an email.

There are five general mailing lists devoted to R.

1.
R-announce: This list announces the availability of new codes and some major announcements on the development of R.

2.
R-help: This is the main R mailing list for discussing problems and solutions using R, additional announcements, the availability of new functionalities for R, documentation for R and backward compatibility with previous codes, and posting of important examples.

3.
R-package-devel: This list provides help about package development in R, serving as a forum for learning about the package development process.

4.
R-devel: This list provides for in-depth discussions on code development in R.

5.
R-packages: This list provides a platform for announcing the availability of new or enhanced contributed packages.

C. Special Interest Groups

____________________________

Additionally, there are several specific special interest group (SIG) mailing lists; however, do post to only one list at time (“SIG” or general one); cross-posting is considered to be impolite.
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R-SIG-Mac: R SIG on Mac ports of R

[image: image178]
R-SIG-DB: R SIG on database interfaces
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R-SIG-dynamic-models: SIG for dynamic simulation models in R
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R-SIG-ecology: Using R in ecologic data analysis
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R-SIG-Epi: R for epidemiologic data analysis
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R-SIG-networks: R SIG for users and developers of network- or graph-related software within R
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R-SIG-phylo: R SIG on phylogenetic and comparative methods and analyses
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R-SIG-Robust: R SIG on robust statistics
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R-SIG-teaching: SIG on teaching statistics (and more) using R
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R-SIG-Wiki: SIG on the development of an “R Wiki”

To satisfy geographic or regional (or subject) needs, some R users have formed R User Groups (RUG) for which there are mailing lists. Information about some of these groups and their lists can be found on the RUG webpage.
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